(2x+3)^2-(2x+1)(2x-1)=22
Giup mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(=5x^3-2x^2y-5x^2y+2xy^2+5x-2y\)
\(=5x^3-7x^2y+2xy^2+5x-2y\)
b, \(=\left(x^2-1\right)\left(x+2\right)\)
\(=x^3-x+2x^2-2\)
c, đề không rõ
d, đề không rõ
P/s có gì bạn tham khảo các thanh công cụ ở trên để đánh cô hỏi cho rõ nha
Bài 2: Tìm x
a) Ta có: (x-2)(x-1)=x(2x+1)+2
\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)
\(\Leftrightarrow x^2-3x+2-2x^2-x-2=0\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy: S={0;-4}
b) Ta có: \(\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)
\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)
\(\Leftrightarrow0x=0\)
Vậy: S={x|\(x\in R\)}
c) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-3x^2+3x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x-3=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
d) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x+20=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\frac{10}{3}\)
Vậy: \(S=\left\{-\frac{10}{3}\right\}\)
e) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow x^3+5x^2+3x^2+2x+10-x^3-8x^2=27\)
\(\Leftrightarrow2x=27-10=17\)
hay \(x=\frac{17}{2}\)
Vậy: \(S=\left\{\frac{17}{2}\right\}\)
b) \(\left(x^2+x+2\right)^2+\left(x-1\right)^2-2\left(x^2+x+2\right)\left(x-1\right)\)
\(=\left(x^2+x+2\right)^2-2\left(x^2+x+2\right)\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x^2+x+2-x+1\right)^2\)
\(=\left(x^2+3\right)^2\)
Đặt \(\left\{{}\begin{matrix}x-2y=a\\\dfrac{1}{2x+3y}=b\end{matrix}\right.\)
hpt trở thành:
\(\left\{{}\begin{matrix}a+b=2\\2a+3b=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2x+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2\left(3+2y\right)+3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\6+4y+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\7y=-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2.-1\\y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Vậy nghiệm hpt \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(3x^3+2x^2+2x+3=0\)
\(\Leftrightarrow3\left(x^3+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2-x+3\right)=0\)
Mà \(3x^2-x+3=3\left[\left(x-\frac{1}{6}\right)^2+\frac{35}{36}\right]>0\forall x\)
Do đó: \(x+1=0\Leftrightarrow x=-1\)
Tập nghiệm: \(S=\left\{-1\right\}\)
\(\left(x-1\right)^3+\left(2x+3\right)^3=27x^3+8\)
\(\Leftrightarrow\left[\left(x-1\right)+\left(2x+3\right)\right]\left[\left(x-1\right)^2-\left(x-1\right)\left(2x+3\right)+\left(2x+3\right)^2\right]=27x^3+8\)
\(\Leftrightarrow\left(3x+2\right)\left(x^2-2x+1-2x^2-3x+2x+3+4x^2+12x+9\right)=27x^3+8\)
\(\Leftrightarrow\left(3x+2\right)\left(3x^2+9x+13\right)=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(\Leftrightarrow\left(3x+2\right)\left(6x^2-15x-9\right)=0\)(Chuyển vế)
\(\Leftrightarrow3\left(3x+2\right)\left(2x^2-5x-3\right)=0\)
\(\Leftrightarrow3\left(3x+2\right)\left(x-3\right)\left(2x+1\right)=0\)
Tập nghiệm: \(S=\left\{-\frac{2}{3};3;-\frac{1}{2}\right\}\)
a) \(2x^2-2x-x^2+6=0\)
\(\Leftrightarrow x^2-2x+1+5=0\)
\(\Leftrightarrow\left(x-1\right)^2=-5\) ( vô lý)
Vậy không có x thoả mãn \(2x.\left(x-1\right)-x^2+6=0\)
b) \(x^4-2x^2.\left(3+2x^2\right)+3x^2.\left(x^2+1\right)=-3\)
\(\Leftrightarrow x^4-6x^2-4x^4+3x^4+3x^2+3=0\)
\(\Leftrightarrow3-3x^2=0\)
\(\Leftrightarrow3x^2=3\Leftrightarrow x^2=1\) \(\Leftrightarrow x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
c) \(\left(x+1\right).\left(x^2-x+1\right)-2x=x.\left(x-2\right).\left(x+2\right)\)
\(\Leftrightarrow x^3+1-2x-x.\left(x^2-4\right)=0\)
\(\Leftrightarrow x^3+1-2x-x^3+4x=0\)
\(\Leftrightarrow1+2x=0\Leftrightarrow x=\dfrac{-1}{2}\)
Vậy x=\(\dfrac{-1}{2}\)
d) \(\left(x+3\right).\left(x^2-3x+9\right)-x.\left(x-2\right).\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x.\left(x^2-4\right)-15=0\)
\(\Leftrightarrow x^3-27-x^3+4x-15=0\)
\(\Leftrightarrow4x-42=0\)
\(\Leftrightarrow x=10,5\)
Vậy x=10,5
\(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
\(\Leftrightarrow\left(4x^2+12x+9\right)-\left(4x^2-1\right)=22\)
\(\Leftrightarrow4x^2+12x+9-4x^2+1=22\)
\(\Leftrightarrow12x+10=22\)
\(\Leftrightarrow12x=12\)
\(\Leftrightarrow x=1\)
2(x−1)−3(2x+2)−4(2x+3)=16
⇔2x−2−6x−6−8x−12=16
⇔−12x−20=16
⇔−12x=16+20
⇔−12x=36
⇔x=−3
Vậy x=−
P.s:-.- Ko chắc đâu ạ