K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

\(\Leftrightarrow\left(4x^2+12x+9\right)-\left(4x^2-1\right)=22\)

\(\Leftrightarrow4x^2+12x+9-4x^2+1=22\)

\(\Leftrightarrow12x+10=22\)

\(\Leftrightarrow12x=12\)

\(\Leftrightarrow x=1\)

24 tháng 6 2019

2(x−1)−3(2x+2)−4(2x+3)=16

⇔2x−2−6x−6−8x−12=16

⇔−12x−20=16

⇔−12x=16+20

⇔−12x=36

x=−3

Vậy x=−

P.s:-.- Ko chắc đâu ạ 

20 tháng 7 2020

a, \(=5x^3-2x^2y-5x^2y+2xy^2+5x-2y\)

\(=5x^3-7x^2y+2xy^2+5x-2y\)

b, \(=\left(x^2-1\right)\left(x+2\right)\)

\(=x^3-x+2x^2-2\)

c, đề không rõ

d, đề không rõ

P/s có gì bạn tham khảo các thanh công cụ ở trên để đánh cô hỏi cho rõ nha

Bài 2: Tìm x

a) Ta có: (x-2)(x-1)=x(2x+1)+2

\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)

\(\Leftrightarrow x^2-3x+2-2x^2-x-2=0\)

\(\Leftrightarrow-x^2-4x=0\)

\(\Leftrightarrow x^2+4x=0\)

\(\Leftrightarrow x\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy: S={0;-4}

b) Ta có: \(\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)

\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)

\(\Leftrightarrow0x=0\)

Vậy: S={x|\(x\in R\)}

c) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-3x^2+3x-1-2x^3+3x^2-2=0\)

\(\Leftrightarrow3x-3=0\)

\(\Leftrightarrow3x=3\)

hay x=1

Vậy: S={1}

d) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)

\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)

\(\Leftrightarrow6x+20=0\)

\(\Leftrightarrow6x=-20\)

hay \(x=-\frac{10}{3}\)

Vậy: \(S=\left\{-\frac{10}{3}\right\}\)

e) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow x^3+5x^2+3x^2+2x+10-x^3-8x^2=27\)

\(\Leftrightarrow2x=27-10=17\)

hay \(x=\frac{17}{2}\)

Vậy: \(S=\left\{\frac{17}{2}\right\}\)

2 tháng 10 2021

b) \(\left(x^2+x+2\right)^2+\left(x-1\right)^2-2\left(x^2+x+2\right)\left(x-1\right)\)

\(=\left(x^2+x+2\right)^2-2\left(x^2+x+2\right)\left(x-1\right)+\left(x-1\right)^2\)

\(=\left(x^2+x+2-x+1\right)^2\)

\(=\left(x^2+3\right)^2\)

3 tháng 4 2022

Đặt \(\left\{{}\begin{matrix}x-2y=a\\\dfrac{1}{2x+3y}=b\end{matrix}\right.\) 

hpt trở thành:

\(\left\{{}\begin{matrix}a+b=2\\2a+3b=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2x+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2\left(3+2y\right)+3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\6+4y+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\7y=-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2.-1\\y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy nghiệm hpt \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

3 tháng 4 2022

Tks ạ!

 

2 tháng 2 2019

\(3x^3+2x^2+2x+3=0\)

\(\Leftrightarrow3\left(x^3+1\right)+2x\left(x+1\right)=0\)

\(\Leftrightarrow3\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2-x+3\right)=0\)

Mà \(3x^2-x+3=3\left[\left(x-\frac{1}{6}\right)^2+\frac{35}{36}\right]>0\forall x\)

Do đó: \(x+1=0\Leftrightarrow x=-1\)

Tập nghiệm: \(S=\left\{-1\right\}\)

2 tháng 2 2019

\(\left(x-1\right)^3+\left(2x+3\right)^3=27x^3+8\)

\(\Leftrightarrow\left[\left(x-1\right)+\left(2x+3\right)\right]\left[\left(x-1\right)^2-\left(x-1\right)\left(2x+3\right)+\left(2x+3\right)^2\right]=27x^3+8\)

\(\Leftrightarrow\left(3x+2\right)\left(x^2-2x+1-2x^2-3x+2x+3+4x^2+12x+9\right)=27x^3+8\)

\(\Leftrightarrow\left(3x+2\right)\left(3x^2+9x+13\right)=\left(3x+2\right)\left(9x^2-6x+4\right)\)

\(\Leftrightarrow\left(3x+2\right)\left(6x^2-15x-9\right)=0\)(Chuyển vế)

\(\Leftrightarrow3\left(3x+2\right)\left(2x^2-5x-3\right)=0\)

\(\Leftrightarrow3\left(3x+2\right)\left(x-3\right)\left(2x+1\right)=0\)

Tập nghiệm: \(S=\left\{-\frac{2}{3};3;-\frac{1}{2}\right\}\)

a) \(2x^2-2x-x^2+6=0\) 

\(\Leftrightarrow x^2-2x+1+5=0\)

\(\Leftrightarrow\left(x-1\right)^2=-5\) ( vô lý)

Vậy không có x thoả mãn \(2x.\left(x-1\right)-x^2+6=0\)

b) \(x^4-2x^2.\left(3+2x^2\right)+3x^2.\left(x^2+1\right)=-3\) 

\(\Leftrightarrow x^4-6x^2-4x^4+3x^4+3x^2+3=0\)

\(\Leftrightarrow3-3x^2=0\)

\(\Leftrightarrow3x^2=3\Leftrightarrow x^2=1\) \(\Leftrightarrow x\in\left\{-1;1\right\}\)

Vậy \(x\in\left\{-1;1\right\}\)

c) \(\left(x+1\right).\left(x^2-x+1\right)-2x=x.\left(x-2\right).\left(x+2\right)\)

\(\Leftrightarrow x^3+1-2x-x.\left(x^2-4\right)=0\)

\(\Leftrightarrow x^3+1-2x-x^3+4x=0\)

\(\Leftrightarrow1+2x=0\Leftrightarrow x=\dfrac{-1}{2}\)

Vậy x=\(\dfrac{-1}{2}\)

d) \(\left(x+3\right).\left(x^2-3x+9\right)-x.\left(x-2\right).\left(x+2\right)=15\)

\(\Leftrightarrow x^3+27-x.\left(x^2-4\right)-15=0\)

\(\Leftrightarrow x^3-27-x^3+4x-15=0\)

\(\Leftrightarrow4x-42=0\)

\(\Leftrightarrow x=10,5\)

Vậy x=10,5

21 tháng 1 2022

a) \(6x^2-2x-6x^2+13=0\\ -2x=-13\\ x=\dfrac{13}{2}\)

b: =>2x-2x-1=x-6x

=>-5x=-1

hay x=1/5