Bài 1: Tìm x
a) \(\left(\frac{1}{8}\right)^x.27^{2.x}=\left(-9\right)^4\)
b) \(5^x\left(5^3\right)^2=625\)
c)\(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)
=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)
=> \(\left|2-\frac{3}{2}x\right|=x+6\)
ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)
Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)
=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)
=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)
b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)
=> x = 1/4
hoặc x = 0 hoặc x = 1/2
a: Ta có: \(\left(7x+4\right)^2-\left(7x-4\right)\left(7x+4\right)\)
\(=\left(7x+4\right)\left(7x+4-7x+4\right)\)
\(=8\left(7x+4\right)\)
=56x+32
b: Ta có: \(8\left(x-2\right)^2-3\left(x^2-4x-5\right)-5x^2\)
\(=8x^2-32x+32-3x^2+12x+15-5x^2\)
\(=-20x+47\)
c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(x+1\right)\)
\(=x^3+3x^2+3x+1-x^3+1-3x^2-3x\)
=2
a) \(\left(\frac{1}{81}\right)^x\cdot27^{2x}=\left(-9\right)^4\)
\(\Leftrightarrow\frac{1}{3^{4x}}\cdot3^{6x}=9^4\)
\(\Leftrightarrow\frac{3^{6x}}{3^{4x}}=3^8\)
\(\Leftrightarrow3^{2x}=3^8\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)
b) \(5^x\cdot\left(5^3\right)^2=625\)
\(\Leftrightarrow5^{x+6}=5^4\)
\(\Leftrightarrow x+6=4\)
\(\Leftrightarrow x=-2\)
c) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
\(\Leftrightarrow\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
\(\Leftrightarrow\left(4x-1\right)^{20}\cdot\left[\left(4x-1\right)^{10}-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=0\\\left(4x-1\right)^{10}=1=\left(\pm1\right)^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{1}{2}\\x=0\end{matrix}\right.\)
Vậy....
xin lỡi các bạn nhé
câu a là \(\frac{1}{81}\)