Rút gọn: \(A=\frac{4.1}{4.1^4+1}+\frac{4.2}{4.2^4+1}+\frac{4.3}{4.3^4+1}+...+\frac{4.k}{4.k^4+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4n^4+1=\left(4n^4+4n^2+1\right)-4n^2=\left(2n^2+2n+1\right)\left(2n^2-2n+1\right)\)
\(\frac{4n}{4n^4+1}=\frac{\left(2n^2+2n+1\right)-\left(2n^2-2n+1\right)}{\left(2n^2-2n+1\right)\left(2n^2+2n+1\right)}=\frac{1}{2n^2-2n+1}-\frac{1}{2n^2+2n+1}\)
Thay vào ta có:
\(\frac{4.1}{4.1^4+1}+\frac{4.2}{4.2^2+1}+...+\frac{4n}{4n^4+1}=\frac{220}{221}\)
\(\Leftrightarrow1-\frac{1}{5}+\frac{1}{5}-\frac{1}{13}+...+\frac{1}{2n^2-2n+1}-\frac{1}{2n^2+2n+1}=\frac{220}{221}\)
\(\Leftrightarrow1-\frac{1}{2n^2+2n+1}=\frac{220}{221}\)
\(\Leftrightarrow\frac{2n^2+2n}{2n^2+2n+1}=\frac{220}{221}\Rightarrow n=10\)
câu 2 là 3<1+1/2+1/3+1/4+...+1/62+1/63<6 nhé
mk ghi nhầm đề baif
Mk làm lun, ko viết lại đề bài nữa nhé =))
a) \(\Leftrightarrow\)\(3^2.3^{n+1}=9^4\)
\(\Leftrightarrow3^{n+1}=9^4:3^2\)
\(\Leftrightarrow3^{n+1}=3^6\)
\(\Rightarrow n+1=6\)
\(\Leftrightarrow n=6-1\)
\(\Rightarrow n=5\)
b)\(\Leftrightarrow2^n.\left(\frac{1}{2}+4\right)=9.2^5\)
\(\Leftrightarrow2^n.\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=\left(9.2^5\right):\frac{9}{2}\)
\(\Rightarrow2^n=468:\frac{9}{2}\)
Tự tính nốt KQ giúp mk nha ♥
a) \(3^2.\frac{1}{243}.81^2.\frac{1}{3^2}=\frac{1.81^2}{243}.\frac{3^2}{3^2}=\frac{6561}{243}.1=27\)
b, \(4^6.256^2.2^4=2^{12}.2^{16}.2^4=2^{32}\)
c) \(A=\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)(Mình rút gọn lun cho nhanh nhé ) \(\Rightarrow A=\frac{4}{5}\)
d) \(\Rightarrow B=70\)k cho mình nha Cô Nàng Họ Dương
Đây nhé : ý a,b mình đã giải thích rồi
c) \(=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}=\frac{2.6}{3.5}=\frac{12}{15}=\frac{4}{5}\)\(\frac{4}{5}\)
d) \(=\frac{2^4.5^4+2^5.5^3}{2^3.5^2}=\frac{2^4.5^3.\left(5+2\right)}{2^3.5^2}=2.5.7=70\)
#)Giải :
\(\frac{1}{9}.3^4.3^n=3^7\)
\(\frac{1}{9}.81.3^n=3^7\)
\(9.3^n=3^7\)
\(3^2.3^n=3^7\)
\(\Rightarrow2+n=7\)
\(\Rightarrow n=5\)
#~Will~be~Pens~#
Số HS lớp 4.1 là:
(46-4):2=21(hs)
Số HS lớp 4.2 là:
46-21=25(hs)
Đ/s:lớp 4.1:21(hs)
lớp 4.2 25hs
Đúng k nhá
\(\frac{4k}{4k^4+1}=\frac{4k}{4k^4+4k^2+1-4k^2}=\frac{4k}{\left(2k^2+1\right)^2-\left(2k\right)^2}=\frac{4k}{\left(2k^2+2k+1\right)\left(2k^2-2k+1\right)}=\frac{1}{2k^2-2k+1}-\frac{1}{2k^2+2k+1}\)
\(=\frac{1}{2k\left(k-1\right)+1}-\frac{1}{2k\left(k+1\right)+1}\)
\(A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{13}+...+\frac{1}{2k\left(k-1\right)+1}-\frac{1}{2k\left(k+1\right)+1}\)
\(=1-\frac{1}{2k\left(k+1\right)+1}=...\)