K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 6 2019

\(\Leftrightarrow\left(5m-2\right)x\le2m^2-m+2\)

- Với \(m=\frac{2}{5}\Rightarrow BPT\) đúng với mọi x \(\Rightarrow\) loại

- Với \(m< \frac{2}{5}\Rightarrow x\ge\frac{2m^2-m+2}{5m-2}\) \(\Rightarrow\) không tồn tại GTLN của x (loại)

- Với \(m>\frac{2}{5}\Rightarrow x\le\frac{2m^2-m+2}{5m-2}\)

Để BPT nhận nghiệm nguyên lớn nhất bằng 1

\(\Rightarrow\frac{2m^2-m+2}{5m-2}< 2\)

\(\Leftrightarrow2m^2-m+2< 10m-4\)

\(\Leftrightarrow2m^2-11m+6< 0\)

\(\Rightarrow\frac{11-\sqrt{73}}{4}< m< \frac{11+\sqrt{73}}{4}\)

\(\Rightarrow m=\left\{1;2;3;4\right\}\)

28 tháng 7 2021

\(mx^2-2\left(m+2\right)x+2m-1< 0\)

\(< =>mx^2-2\left(m+2\right)x+2m-1\ge0\)

\(a=m\ne0\)

\(\Delta=\left(2m+2\right)^2-4m\left(2m-1\right)\)

\(\Delta=4m^2+8m+4-8m^2+4m\)

\(\Delta=12m-4m^2+4\)

\(< =>\hept{\begin{cases}a>0\\\Delta\le0\end{cases}\hept{\begin{cases}m>0\\12m-4m^2+4\le0\end{cases}\hept{\begin{cases}m>0\\m=\left[\frac{3-\sqrt{13}}{2};\frac{3+\sqrt{13}}{2}\right]\end{cases}}}}\)

\(< =>m=(0;\frac{3+\sqrt{13}}{2}]\)

vậy m vô số nghiệm để bpt vô nghiệm

12 tháng 2 2017

27 tháng 4 2018

Chọn C

17 tháng 12 2019

Đáp án D.

Ta có:

P T ⇔ m 9 4 x − 2 m + 1 6 4 x + m ≤ 0 ⇔ m 3 2 2 x − 2 m + 1 3 2 x + m ≤ 0

Đặt t = 3 2 x ;  do x ∈ 0 ; 1 ⇒ t ∈ 1 ; 3 2 .  Khi đó PT trở thành: m t 2 − 2 m + 1 t + m ≤ 0 ⇔ m t 2 − 2 t + 1 ≤ t

Rõ ràng t = 1 là nghiệm của BPT đã cho.

Với t ∈ 1 ; 3 2 ⇒ m ≤ t t − 1 2 = f t ,  xét f x  với t ∈ 1 ; 3 2  ta có:

f ' t = t − 1 − 2 t t − 1 3 = − t − 1 t − 1 2 < 0 ∀ t ∈ 1 ; 3 2

do đó f t   nghịch biến trên 1 ; 2 3 .

Do đó BPT nghiệm đúng vơi ∀ t ∈ 1 ; 3 2 ⇔ m ≤ M i n 1 ; 3 2 f t = f 3 2 = 6

Vậy có 6 giá trị nguyên dương của m thỏa mãn.

1 tháng 4 2017

Đáp án D.

Ta có:

P T ⇔ m 9 4 x - 2 m + 1 6 4 x + m ≤ 0

⇔ m 3 2 2 x - 2 m + 1 3 2 x + m ≤ 0

Đ ặ t   t = 3 2 x ;   d o   x ∈ 0 ; 1 ⇒ t ∈ 1 ; 3 2 .

Khi đó PT trở thành:

  m t 2 - 2 m + 1 t + m ≤ 0 ⇔ m t 2 - 2 t + 1 ≤ t

Rõ ràng t =1 là nghiệm của BPT đã cho.

D o   đ ó   B P T   n g h i ệ m   đ ú n g   v ớ i   ∀ t ∈ 1 ; 3 2

⇔ m ≤ M i n 1 ; 3 2 f t = f 3 2 = 6 .

Vậy có 6 giá trị nguyên dương của m thỏa mãn.

 

3 tháng 11 2018

Chọn B.

Đặt t= 5x>  0.

+ Phương trình đã cho trở thành: t2-( m+2) t+2m-1=0  suy ra   ( 2)

 ( với t= 2 phương trình vô nghiệm).

Do đó phương trình đã cho có nghiệm khi phương trình (2) có nghiệm t> 0 .

+ Lập bảng biến thiên của hàm số f(t)  dựa vào bảng biến thiên suy ra  m ≤ 0 m ≥ 4

kết hợp điều kiện m nguyên và m  ∈ [0;2018] => m  ∈ {0;4;5;6;...;2018}

Vậy nghiệm 2016 giá trị của m thỏa mãn yêu cầu bài toán ra

 

20 tháng 4 2019