Tìm ĐKXĐ của các biểu thức sau:
\(a,\frac{1}{1-\sqrt{x^2-3}}\)
\(b,\frac{x-1}{2-\sqrt{3x+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
\(a,\)\(\frac{2}{\sqrt{x^2-x+1}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x^2-x+1\ge0\\x^2-x+1\ne0\end{cases}\Rightarrow x^2-x+1>0}\)
Mà \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với \(\forall x\)
\(\Rightarrow\)Biểu thức luôn được xác định với mọi x
Lời giải:
a)
ĐKXĐ: \(\left\{\begin{matrix} x^2-3\geq 0\\ 1-\sqrt{x^2-3}\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x^2-3\geq 0\\ x^2-3\neq 1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x\geq \sqrt{3}\\ x\leq -\sqrt{3}\end{matrix}\right.\\ x^2\neq 4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x\geq \sqrt{3}\\ x\leq -\sqrt{3}\end{matrix}\right.\\ x\neq \pm 2\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x\geq \sqrt{3}, x\neq 2\\ x\leq -\sqrt{3}, x\neq -2\end{matrix}\right.\)
b)
ĐKXĐ: \(\left\{\begin{matrix} 3x+1\geq 0\\ 2-\sqrt{3x+1}\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3x+1\geq 0\\ 3x+1\neq 4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{3}\\ x\neq 1\end{matrix}\right.\)
\(A=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\) ĐKXĐ : x > 0 , x khác 9
\(A=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(A=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(A=\frac{-3\sqrt{x}}{\sqrt{x}+3}.\frac{1}{\sqrt{x}+1}\)
\(A=\frac{-3\sqrt{x}}{x+4\sqrt{x}+4}\)
\(A=\frac{-3\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\)
a) ĐKXĐ : x>hoặc = 0 ; x khác 9
Còn câu b,c,d để vài bữa mình làm tiếp cho bây giờ mình đi ngủ đã buồn ngủ quá !
----------------- -Học tốt-----------------
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)\(\left(ĐKXĐ:x\ne4\right)\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
b) Với \(x=3\)( thỏa mãn ĐKXĐ ) ta có \(P=\frac{3\sqrt{3}}{\sqrt{3}+2}=-9+6\sqrt{3}\)
c) A ở đâu ???? '-'
Bài 1 :
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(\Leftrightarrow A=\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
b) Để \(A< -1\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< -1\)
\(\Leftrightarrow\sqrt{x}-2< -\sqrt{x}-1\)
\(\Leftrightarrow2\sqrt{x}< 1\)
\(\Leftrightarrow\sqrt{x}< \frac{1}{2}\)
\(\Leftrightarrow x< \frac{1}{4}\)
Vậy để \(A< -1\Leftrightarrow x< \frac{1}{4}\)
\(b,\sqrt{\frac{2x-1}{x+3}}\)
\(Đk:\)\(x+3\ne0\Rightarrow x\ne-3\)
Và \(\frac{2x-1}{x+3}\ge0\)
Khi \(\frac{2x-1}{x+3}=0\Rightarrow2x-1=0\)
\(\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Khi \(\frac{2x-1}{x+3}>0\)\(\Rightarrow\orbr{\begin{cases}2x-1>0;x+3>0\\2x-1< 0;x+3< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2};x>-3\\x< \frac{1}{2};x< -3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x< -3\end{cases}}\)
Vậy căn thức xác định khi \(x\ge\frac{1}{2};x< -3\)
bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\)
Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-1}{\sqrt{x}+1}\)
\(a,\)\(\frac{1}{1-\sqrt{x^2-3}}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}x^2-3\ge0\\x^2-3\ne1\end{cases}}\).
\(x^2-3\ne1\)\(\Rightarrow x^2\ne4\)\(\Rightarrow x\ne\pm2\)
\(x^2-3\ge0\)\(\Rightarrow\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\ge0\)
Chia trường hợp ra làm nốt nhé
....
\(b,\)\(\frac{x-1}{2-\sqrt{3x+1}}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}3x+1\ge0\\\sqrt{3x+1}\ne2\end{cases}}\)
\(3x+1\ge0\)\(\Rightarrow3x\ge-1\)
\(\Rightarrow x\ge\frac{-1}{3}\)
\(\sqrt{3x+1}\ne2\)\(\Rightarrow|3x+1|\ne4\)\(\Rightarrow\hept{\begin{cases}3x-1\ne4\\3x-1\ne-4\end{cases}\Rightarrow\hept{\begin{cases}3x\ne5\\3x\ne-3\end{cases}\Rightarrow}\hept{\begin{cases}x\ne\frac{5}{3}\\x\ne-1\end{cases}}}\)
\(\Rightarrow x\ge-\frac{1}{3}\)và \(x\ne\frac{5}{3}\)