Chứng minh rằng:
a, a2 + b2 -2ab lớn hơn hặc bằng 0
b, \(\frac{a^2+b^2}{2}\)lớn hơn hoặc bằng ab
c, a(a+2) < (a+1)2
d, m2 + n2 +2 lớn hơn hoặc bằng 2(m+n)
e, (a+b)(\(\frac{1}{a}\)+ \(\frac{1}{b}\) ) lớn hơn hoặc bằng 4 ( với a>0,b>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy : \(\frac{\sqrt{\left(a-1\right).1}}{a}+\frac{\sqrt{\left(b-2\right).2}}{\sqrt{2}b}\le\frac{a-1+1}{2a}+\frac{b-2+2}{2\sqrt{2}b}=\frac{1}{2}+\frac{1}{2\sqrt{2}}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}a-1=1\\b-2=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a=2\\b=4\end{cases}}\)
Vậy max A = \(\frac{1}{2}+\frac{1}{2\sqrt{2}}\Leftrightarrow\left(a;b\right)=\left(2;4\right)\)
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
a.
Ta có: \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{3}.2^2=2\) (đpcm)
Dấu "=" xảy ra khi \(a=b=1\)
b.
\(a^4+b^4\ge\dfrac{1}{2}\left(a^2+b^2\right)^2\ge\dfrac{1}{2}.2^2=2\) (sử dụng kết quả \(a^2+b^2\ge2\) của câu a)
Dấu "=" xảy ra khi \(a=b=1\)
c.
\(a^2b^2\left(a^2+b^2\right)=\dfrac{1}{2}ab.2ab\left(a^2+b^2\right)\le\dfrac{1}{8}\left(a+b\right)^2\left(2ab+a^2+b^2\right)^2=2\)
d.
\(8\left(a^4+b^4\right)+\dfrac{1}{ab}\ge8.2+\dfrac{4}{\left(a+b\right)^2}=16+\dfrac{4}{2^2}=17\) (sử dụng kết quả câu b)
Câu a)
Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b
Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1
Câu b) Áp dụng BĐT Bunhiacopxki ta có
(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2
Dấu "=" xảy ra <=> x = y
câu1 : cần sửa lại là A2 + B2 \(\ge\frac{1}{2}\)
Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)
<=> A2 + B2 + 2A.B \(\le\) 2. (A2 + B2)
<=> 0 \(\le\) A2 + B2 - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng
b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm
\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)
\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
b ) chuyển vế tương tự
a) a2+b2-2ab=(a-b)2>=0
b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=> \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)
c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)