K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

Giả sử cả ba bđt đều đúng 

Ta có a+b<c+da+b<c+d và ab+cd>(a+b)(c+d)ab+cd>(a+b)(c+d)

→ab+cd>(a+b)2≥4ab→ab+cd>(a+b)2≥4ab (BĐT Cauchy)

→cd≥3ab→cd≥3ab  (1)(1)

-------

Ta có (a+b)cd<(c+d)ab(a+b)cd<(c+d)ab và (c+d)(a+b)<ab+cd(c+d)(a+b)<ab+cd

→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab

Mà (a+b)2.cd≥4abcd(a+b)2.cd≥4abcd  (BĐT Cauchy)

→(ab+cd)ab>4abcd→(ab+cd)ab>4abcd

→ab>3cd→ab>3cd (2)(2)

(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:Mâu thuẫn với giả thiết a,b,c,da,b,c,d dương

→đpcmGiả sử cả ba bđt đều đúng 

Ta có a+b<c+da+b<c+d và ab+cd>(a+b)(c+d)ab+cd>(a+b)(c+d)

→ab+cd>(a+b)2≥4ab→ab+cd>(a+b)2≥4ab (BĐT Cauchy)

→cd≥3ab→cd≥3ab  (1)(1)

-------

Ta có (a+b)cd<(c+d)ab(a+b)cd<(c+d)ab và (c+d)(a+b)<ab+cd(c+d)(a+b)<ab+cd

→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab

Mà (a+b)2.cd≥4abcd(a+b)2.cd≥4abcd  (BĐT Cauchy)

→(ab+cd)ab>4abcd→(ab+cd)ab>4abcd

→ab>3cd→ab>3cd (2)(2)

(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:Mâu thuẫn với giả thiết a,b,c,da,b,c,d dương

→đpcm

11 tháng 6 2019

#)Giải :

Giải sử cả ba BĐT đều đúng 

Ta có : a + b < c + d và ab + cd > ( a + b )( c + d )

=> ab + cd > ( a + b )2 ≥ 4ab ( BĐT Cauchy )

=> cd ≥ 3ab (1)

Ta có : ( a + b )cd < ( c + d )ab và ( c + d )( a + b ) < ab + cd 

=> ( a + b )2 .cd < ( c + d )( a + b )ab < ( ab + cd )ab

Mà ( a + b )2 .cd ≥ 4abcd ( BĐT Cauchy ) 

=> ( ab + cd )ab > 4abcd

=> ab > 3cd (2)

Từ (1) và (2) => ab + cd > 4( ab + cd ) => ab + cd < 0 mâu thuẫn với giả thiết a,b,c,d 

=> Không thể đồng thời xảy ra cả ba BĐT trên ( đpcm )

15 tháng 8 2018

http://123link.pro/CXyvaQM

18 tháng 2 2017

Chứng minh là sai đề đấy

21 tháng 2 2017

Phải là tìm a,b,c mới đúng 

3 tháng 10 2021

MN lm đc câu a mk mừng rơi nước mắt lun

4 tháng 10 2021

a) Đặt f(x)=c_1.x^n + c_2.x^(n - 1) + ... + c_(n - 1).x^2 + c_n.x

Ta có:
a^n − b^n

= (a−b).(a^(n−1) + a^(n−2).b + ... + b^(n−1))

⇒f(a) − f(b) = (a − b).P(a, b) với P(a, b) là 1 đa thức chứa a, b với hệ số nguyên
Suy ra f(a) - f(b) chia hết cho (a - b)

26 tháng 3 2016

b là TBC của a+c <=> \(b=\frac{a+c}{2}\)\(\Leftrightarrow2b=a+c\)

Ta có: \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\Leftrightarrow\frac{1}{c}=\frac{1}{2}.\left(\frac{b+d}{bd}\right)\Leftrightarrow\frac{1}{c}=\frac{b+d}{2bd}\Leftrightarrow c\left(b+d\right)=2bd\)

\(\Leftrightarrow bc+cd=2bd\)

Mà 2b=a+c

=>bc+cd=(a+c).d

=>bc+cd=ad+cd

=>bc=ad (cùng bớt đi cd)

=>a/b=c/d (đpcm)

26 tháng 3 2016

Ta có b là TBC của a và c =>2b=a+c

+) 1 :c = 1:2(1:b+2:d)=>1:c=>(d+2b):(2bd)

=>2bd=c(d+2b)

Thay 2b = a + c, ta có :

(a + c)d = c(d + a + c) => ad + cd = cd + ac +c^2

=>ad=ac+c^2=>ad=c(a+c)=>ad=cb=>a:b=c:d(đpcm) 

8 tháng 3 2016

Ta có b là TBC của a và c => a + c = 2b 

+) 1:c = 1:2(1:b + 2:d) => 1:c = (d+2b):(2bd)

=> 2bd = c(d+2b)

Thay 2b = a + c, ta có :

(a + c)d = c(d + a + c) => ad + cd = cd + ac + \(c^2\)

=> ad = ac + \(c^2\) => ad = c(a+c) => ad = cb => a:b = c:d

30 tháng 9 2017

cảm ơn hen

26 tháng 8 2019

bớt xàm đc ko tth?

22 tháng 9 2019

Đặt \(a=\frac{x}{3};b=\frac{y}{3};c=\frac{z}{3}\)=> \(x+y+z=3\)

=> Cần Cm: \(x^2y+y^2z+z^2x\le4\)

Giả sử \(x\ge y\ge z\)

=> \(z\left(x-y\right)\left(y-z\right)\ge0\)

=> \(xyz+z^2y\ge y^2z+z^2x\)

Khi đó BĐT 

<=> \(xyz+z^2y+x^2y\le4\)

<=> \(y\left(x^2+z^2+xz\right)\le4\)

<=>\(y.\left[\left(3-y\right)^2-xz\right]\le4\) 

Do \(xz\ge0\)

=> \(y\left(3-y\right)^2\le4\)

<=> \(y^3-6y^2+9y-4\le0\)

<=> \(\left(y-4\right)\left(y-1\right)^2\le0\)luôn đúng do \(y< 3< 4\)

=> ĐPCM

Dấu bằng xảy ra khi \(x=2;y=1;z=0\)và các hoán vị

=> \(a=\frac{2}{3};b=\frac{1}{3};c=0\)và các hoán vị

24 tháng 3 2016

Ta có b là TBC của a và c =>2b=a+c

+) 1 :c = 1:2(1:b+2:d)=>1:c=>(d+2b):(2bd)

=>2bd=c(d+2b)

Thay 2b = a + c, ta có :

(a + c)d = c(d + a + c) => ad + cd = cd + ac +c^2

=>ad=ac+c^2=>ad=c(a+c)=>ad=cb=>a:b=c:d(đpcm) 

18 tháng 10 2016

linh tinh