Cho tam giác ABC nhọn nội tiếp (O), D là điểm chính giữa cung nhỏ BC. Trên đoạn OD lấy điểm P bất kì. Qua P dựng các đường thẳng song song với AB,AC cắt DB,DC lần lượt tại M,N; cắt AC,AB lần lượt tại E,F. Đường tròn (DMN) cắt (O) tại R khác D. Chứng minh RP chia đôi EF ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điểm M, N bị thừa à bạn?
Do OE là đường trung bình của tam giác DAF nên ED = EF.
Do ED là tiếp tuyến của (O) nên ED2 = EB . EC.
Từ đó EF2 = EB . EC nên đường thẳng EF tiếp xúc với đường tròn ngoại tiếp tam giác BCF.
a) Từ O hạ OT vuông góc với MN tại T. Dễ thấy OE là trung trực AC nên OE vuông góc AC.
Mà AC // EM nên OE vuông góc EM. Từ đó ^OEM = ^OCM = ^OTM = 900, suy ra 5 điểm O,E,M,C,T cùng thuộc 1 đường tròn.
Tương tự, ta có 5 điểm O,F,B,N,T cùng thuộc 1 đường tròn. Do đó ^OTE = ^OCE = ^OAE = ^OBF = ^OTF.
Từ đó 3 điểm E,F,T thẳng hàng. Vậy thì ^OCT = ^ OEA = ^OEC = ^OTC.
Suy ra \(\Delta\)OCT cân tại O hay OT = OC. Khi đó MN tiếp xúc với (O) tại T. Theo tính chất 2 tiếp tuyến giao nhau:
BN = TN, CM = TM => BN + CM = MN (đpcm).
b) Gọi đường thẳng CR cắt (O) tại S. Ta sẽ chỉ ra S,B,Q thẳng hàng. Thật vậy:
Ta có: ^AQR + ^ACM = 1800 => ^AQR = 1800 - ^ACM = ^ABC = 1800 - ^ASR => Tứ giác ASRQ nội tiếp
=> ^RSQ = ^RAQ = 1800 - ^AQR - ^ARQ = 1800 - ^ABC - ^ACB = ^BAC = ^CSB.
Từ đó 3 điểm S,B,Q thẳng hàng (Vì SB trùng SQ). Vậy BQ và CR cắt nhau trên đường tròn (O) (đpcm).
a)Xét (O) có:
góc PDA và góc PIA là 2 góc có đỉnh nằm trong đường tròn
=>góc PDA=\(\dfrac{sđ\stackrel\frown{AP}+sđ\stackrel\frown{BM}}{2}\),góc PIA=\(\dfrac{sđ\stackrel\frown{AP}+sđ\stackrel\frown{MC}}{2}\)
mà \(\stackrel\frown{BM}=\stackrel\frown{MC}\)(M là điểm chính giữa)
=> góc PDA = góc PIA
Xét tứ giác AIDP có
2 đỉnh D và I kề nhau cùng nhìn cạnh AP
góc PDA = góc PIA (cmt)
=>AIDP là tứ giác nội tiếp (dhnb)
b)Xét (O) có
PAB và PCB là 2 góc nội tiếp cùng chắn cung BP
=> góc PAB = góc PCB
mà góc PAB = góc PID ( tứ giác AIDP nội tiếp)
=> góc PCB= góc PID
=>ID//BC
c)CMTT câu trên ta được IE//BC
Mà ID//BC
=>IE trùng với ID(tiên đề ơ clit)
=> 3 ddierm D,I,E thẳng hàng
Bốn điểm A,B,D,C cùng nằm trên (O) theo thứ tự đó => ^BAC + ^BDC = 1800
Vì PM // AB, PN // AC nên ^MPN = ^BAC. Do đó ^MPN + ^BDC = 1800 => Tứ giác PMDN nội tiếp
Lúc này, điểm R nằm trên đường tròn ngoại tiếp tứ giác PMDN
=> ^DRP = ^DNP = ^DCA (Bởi PN // AC) = ^DRA. Ta thấy A,P nằm cùng phía so với DR nên RP trùng RA
Hay A,P,R thẳng hàng. Dễ thấy tứ giác AEPF là hình bình hành, suy ra AP chia đôi EF
Vậy nên RP cũng chia đôi EF (đpcm).