K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2019

A B C P D R M N E F O

Bốn điểm A,B,D,C cùng nằm trên (O) theo thứ tự đó => ^BAC + ^BDC = 1800

Vì PM // AB, PN // AC nên ^MPN = ^BAC. Do đó ^MPN + ^BDC = 1800 => Tứ giác PMDN nội tiếp

Lúc này, điểm R nằm trên đường tròn ngoại tiếp tứ giác PMDN

=> ^DRP = ^DNP = ^DCA (Bởi PN // AC) = ^DRA. Ta thấy A,P nằm cùng phía so với DR nên RP trùng RA

Hay A,P,R thẳng hàng. Dễ thấy tứ giác AEPF là hình bình hành, suy ra AP chia đôi EF

Vậy nên RP cũng chia đôi EF (đpcm).

13 tháng 3 2021

Điểm M, N bị thừa à bạn?

Do OE là đường trung bình của tam giác DAF nên ED = EF.

Do ED là tiếp tuyến của (O) nên ED2 = EB . EC.

Từ đó EF2 = EB . EC nên đường thẳng EF tiếp xúc với đường tròn ngoại tiếp tam giác BCF.

10 tháng 4 2019

A B C O P F E M N Q R S T

a) Từ O hạ OT vuông góc với MN tại T. Dễ thấy OE là trung trực AC nên OE vuông góc AC.

Mà AC // EM nên OE vuông góc EM. Từ đó ^OEM = ^OCM = ^OTM = 900, suy ra 5 điểm O,E,M,C,T cùng thuộc 1 đường tròn.

Tương tự, ta có 5 điểm O,F,B,N,T cùng thuộc 1 đường tròn. Do đó ^OTE = ^OCE = ^OAE = ^OBF = ^OTF.

Từ đó 3 điểm E,F,T thẳng hàng. Vậy thì ^OCT = ^ OEA = ^OEC = ^OTC.

Suy ra \(\Delta\)OCT cân tại O hay OT = OC. Khi đó MN tiếp xúc với (O) tại T.  Theo tính chất 2 tiếp tuyến giao nhau:

BN = TN, CM = TM => BN + CM = MN (đpcm).

b) Gọi đường thẳng CR cắt (O) tại S. Ta sẽ chỉ ra S,B,Q thẳng hàng. Thật vậy:

Ta có: ^AQR + ^ACM = 1800 => ^AQR = 1800 - ^ACM = ^ABC = 1800 - ^ASR => Tứ giác ASRQ nội tiếp

=> ^RSQ = ^RAQ = 1800 - ^AQR - ^ARQ = 1800 - ^ABC - ^ACB = ^BAC = ^CSB.

Từ đó 3 điểm S,B,Q thẳng hàng (Vì SB trùng SQ). Vậy BQ và CR cắt nhau trên đường tròn (O) (đpcm).

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ...
Đọc tiếp

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF

2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.

3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.

Tính tỷ số diện tích tam giác AND với diện tam giác PMD?

 

0
4 tháng 2 2022

a)Xét (O) có:

góc PDA và góc PIA là 2 góc có đỉnh nằm trong đường tròn

=>góc PDA=\(\dfrac{sđ\stackrel\frown{AP}+sđ\stackrel\frown{BM}}{2}\),góc PIA=\(\dfrac{sđ\stackrel\frown{AP}+sđ\stackrel\frown{MC}}{2}\)

mà \(\stackrel\frown{BM}=\stackrel\frown{MC}\)(M là điểm chính giữa)

=> góc PDA = góc PIA

Xét tứ giác AIDP có

 2 đỉnh D và I kề nhau cùng nhìn cạnh AP

góc PDA = góc PIA (cmt)

=>AIDP là tứ giác nội tiếp (dhnb)

b)Xét (O) có

 PAB và PCB là 2 góc nội tiếp cùng chắn cung BP

=> góc PAB = góc PCB

mà góc PAB = góc PID ( tứ giác AIDP nội tiếp)

=> góc PCB= góc PID

=>ID//BC

c)CMTT câu trên ta được IE//BC

Mà ID//BC

=>IE trùng với ID(tiên đề ơ clit)

=> 3 ddierm D,I,E thẳng hàng