K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2019

A C B N D E M

( Thông cảm hình bị lệch )

a) + Xét \(\Delta ABC\)và \(\Delta DMC\)có :

AM = DM ( gt )

\(\widehat{AMB}=\widehat{DMC}\)( vì là hai góc đối đỉnh )                => \(\Delta AMB=\Delta DMC\)

MB = MC ( AM là trung tuyến của \(\Delta ABC\))

=> \(\widehat{B}=\widehat{MCD}\)( hai góc tương ứng )

=> DC // AB ( có hai góc so le trong = )

Mà AB \(\perp\)AC ( Vì \(\Delta ABC\)vuông tại A)

=> DC _|_ AC 

+ Xét \(\Delta BEC\)có :

M là trung điểm của cạnh BC ( Vì AM là trung tuyến của ABC )

=> EM là trung tuyến

A là trung điểm của BE ( Vì EA = AB ) => CA là trung tuyến

Mà EM cắt AC tại N => N là trọng tâm của \(\Delta ABC\)

\(\Rightarrow NC=\frac{2}{3}CA\Rightarrow NC=2NA\)

+ Ta có \(\Delta AMB=\Delta DMC\Rightarrow AB=CD\)

Xét \(\Delta ACD\)có :

CD + AC > AD ( bđt tam giác ) . Mà CD = AB ; AD = 2AM

=> \(AB+AC>2AM\Leftrightarrow\frac{AB+AC}{2}>AM\)(1)

+ Xét \(\Delta AMB\)có : AM > AB - BM

          \(\Delta AMC\)có : AM > AC - CM

=> 2AM > AB + AC - BM - CM

<=> 2AM > AB + AC - (BM +CM )

<=> 2AM > AB + AC - BC

<=> AM > \(\frac{AB+AC-BC}{2}\)(2)

Từ (1), (2) => Điều cần cm trên đề bài .

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔEMB=ΔFMC

=>EM=FM

=>M là trung điểm của EF

19 tháng 12 2016

A B C D E F M

a) Xét ΔABM và ΔDCM có:

BM=CM(gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

AM=DM(gt)

=>ΔABM=ΔDCM(c.g.c)

b) Vì ΔABM=ΔDCM(cmt)

=>\(\widehat{ABM}=\widehat{DCM}\). Mà hai góc này pử vị trí sole trong

=>AB//DC

c)Xét ΔEBM và ΔFCM có:

\(\widehat{BEM}=\widehat{CFM}=90^o\)

BM=MC(gt)

\(\widehat{BME}=\widehat{CMF}\left(đđ\right)\)

=>ΔEBM=ΔFCM( cạnh huyền-góc nhọn)

=>ME=MF

=>M là trung điểm của EF

31 tháng 5 2017

2015-12-20_100918

a) Xét ΔABM và ΔDCM, có:

MB = MC (gt)

∠AMB = ∠DCM (đối đỉnh)

MA = MD (gt)

Vậy ΔABM = ΔDCM (c-g-c)

b) Từ ΔABM = ΔDCM (chứng minh câu a)

Suy ra: ∠ABM = ∠ DCM (hai góc tương ứng)

Mà hai góc ∠ABM và ∠DCM ở vị trí so le trong

Vậy AB // DC

c) Xét ΔBEM và ΔCFM (∠E = ∠F = 90º)

Có: MB = MC (gt)

∠AMB = ∠DMC (đối đỉnh)

Do đó: ΔBEM = ΔCFM (cạnh huyền-góc nhọn)

Suy ra: ME = MF (hai cạnh tương ứng)

Vậy M là trung điểm của EF

15 tháng 12 2023

loading...  loading...  

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có

M là trung điểm của AD
M là trung điểm của BC

Do đó:ABDC là hình bình hành

Suy ra: AB//CD

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM la đường cao

10 tháng 10 2019

A B C E M F D

a ) Xét \(\Delta ABM\)và \(\Delta DCB\) có :

BM = CM (gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

AM = DM (gt)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

Vì : \(\Delta ABM=\Delta DCM\left(cmt\right)\)

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\) . Mà 2 góc này ở vị trí so le trong 

\(\Rightarrow\) AB // DC

c )  Xét \(\Delta EBM\) và \(\Delta FCM\) có :
\(\widehat{BEM}=\widehat{CFM}=90^o\)

BM = MC (gt)

\(\widehat{BME}=\widehat{CMF}\left(đđ\right)\)

\(\Rightarrow\Delta EBM=\Delta FCM\)(cạnh huyền - góc nhọn )

\(\Rightarrow ME=MF\)

\(\Rightarrow M\) là trung điểm của EF ( đpcm)

Chúc bạn học tốt !!!

1 tháng 2 2022
 

Tham Khảo :

Bạn tự vẽ hình nha

a) Xét t/g ABM và t/g DCM có:

BM = CM (gt)

AMB = DMC ( đối đỉnh)

MA = MD (gt)

Do đó, t/g ABM = t/g DCM (c.g.c) (đpcm)

b) t/g ABM = t/g DCM (câu a)

=> ABM = DCM (2 góc tương ứng)

Mà ABM và DCM là 2 góc ở vj trí so le trong nên AB // DC (đpcm)

c) t/g AMC = t/g AMB (c.c.c)

=> AMC = AMB (2 góc tương ứng)

Mà AMC + AMB = 180o ( kề bù)

=> AMC = AMB = 90o

=> AM _|_ BC (đpcm)

d) AB // CD => BAD = ADC = 30o (so le trong)

Mà BAD = CAD do t/g AMB = t/g AMC (câu c)

=> BAD + CAD = 2.BAD = 2.30o = 60o

T/g ABC cân tại A, có BAC = 60o

=> t/g BAC đều

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔACB cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

a) Xét ΔAMB và ΔDMC có

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔDMC(c-g-c)