K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 6 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky và Cauchy ngược dấu ta có:

\((m\sqrt{123-n^2}+n\sqrt{123-m^2})^2\leq (m^2+n^2)(123-n^2+123-m^2)\leq \left(\frac{m^2+n^2+123-n^2+123-m^2}{2}\right)^2\)

\(\Leftrightarrow (m\sqrt{123-n^2}+n\sqrt{123-m^2})^2\leq 123^2\)

\(\Rightarrow m\sqrt{123-n^2}+n\sqrt{123-m^2}\leq 123\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{m}{\sqrt{123-n^2}}=\frac{n}{\sqrt{123-m^2}}\\ m^2+n^2=123-n^2+123-m^2(1)\end{matrix}\right.\)

Từ (1) \(\Rightarrow m^2+n^2=123\)

NV
12 tháng 6 2019

Áp dụng BĐT Bunhiacôpxki:

\(123^2=\left(m\sqrt{123-n^2}+n\sqrt{123-m^2}\right)^2\)

\(\Rightarrow123^2\le\left(m^2+n^2\right)\left(123-n^2+123-m^2\right)\)

\(\Leftrightarrow123^2\le\left(m^2+n^2\right)\left(2.123-m^2-n^2\right)\)

Đặt \(m^2+n^2=x\)

\(\Rightarrow123^2\le x\left(2.123-x\right)\)

\(\Leftrightarrow x^2-2.x.123+123^2\le0\)

\(\Leftrightarrow\left(x-123\right)^2\le0\)

\(\Leftrightarrow x-123=0\Rightarrow x=123\)

TL:

N : M = 87207 : 123 = 709 

Chúc bạn học tốt nha!

UwU

TL

Giá trị biểu thức = 709

Hc tốt

@Kirito

26 tháng 1 2016

bn nhấn vào đúng 0 sẽ ra đáp án

NV
29 tháng 6 2019

ĐKXĐ: \(x>0\)

\(\Leftrightarrow\left[{}\begin{matrix}2log_3^2x-log_3x-1=0\\5^x=m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}log_3x=1\\log_3x=-\frac{1}{2}\end{matrix}\right.\\5^x=m\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=3\\x=\frac{1}{\sqrt{3}}\end{matrix}\right.\\5^x=m\end{matrix}\right.\)

Xét pt \(5^x=m\)

- Nếu \(m>5^3=125\Rightarrow\left[{}\begin{matrix}x=3\\x=\frac{1}{\sqrt{3}}\end{matrix}\right.\) ko phải nghiệm của pt đã cho \(\Rightarrow\) phương trình có đúng 1 nghiệm

- Nếu \(m=5^3\Rightarrow\) pt có đúng 1 nghiệm \(x=3\)

- Nếu \(1< m< 5^{\frac{1}{\sqrt{3}}}\) phương trình có 3 nghiệm \(\left\{{}\begin{matrix}x=1\\x=\frac{1}{\sqrt{3}}\\x=log_5m\end{matrix}\right.\)

- Nếu \(5^{\frac{1}{\sqrt{3}}}< m< 5^3\) phương trình có 2 nghiệm: \(\left[{}\begin{matrix}x=3\\x=log_5m\end{matrix}\right.\)

- Nếu \(m=1\Rightarrow\) pt có 2 nghiệm \(\left[{}\begin{matrix}x=3\\x=\frac{1}{\sqrt{3}}\end{matrix}\right.\)

Vậy để pt có 2 nghiệm pb thì: \(\left[{}\begin{matrix}m=1\\5^{\frac{1}{\sqrt{3}}}< m< 5^3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\3\le m\le124\end{matrix}\right.\) \(\Rightarrow\)\(123\) giá trị m thỏa mãn

1 tháng 11 2016

ai ko hiểu giải hộ cho tớ biết làm nên đố tí

2 tháng 9 2017

Set \(\left\{{}\begin{matrix}\sqrt{x^2+1}-x=a\\\sqrt{x^2+1}+x=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a^5+b^5=123\\\dfrac{1}{a^5}+\dfrac{1}{b^5}=123\end{matrix}\right.\)

19 tháng 4 2020

\(\sqrt{227-30\sqrt{2}}+\sqrt{123+22\sqrt{2}}\)

=\(\sqrt{225+2.15.\sqrt{2}+2}+\sqrt{121+2.11\sqrt{2}+2}\)

=\(\sqrt{\left(15+\sqrt{2}\right)^2}+\sqrt{\left(11+\sqrt{2}\right)^2}\)

=\(15+\sqrt{2}+11+\sqrt{2}\)

=\(26+2\sqrt{2}\)