Cho tam giác ABC (AC<BC) nội tiếp đường tròn đường kính AB,đường cao CH.Trên cung nhỏ BC lấy M(M khác B và C),gọi E là giao điểm của CH và AM.
a,Chứng minh tứ giác EHBM nội tiếp,
b,Chứng minh AC^2=AH*AB và AC*MC=AM*CE.
c,Xác định vị trí điểm M để khoảng cách từ H đến tâm đường tròn ngoài tiếp tam giác CEM là ngắn nhất
a) Ta thấy ^AMB chắn nửa đường tròn (O) đường kính AB nên ^AMB = 900
Khi đó tứ giác EHBM có ^EMB + ^EHB = 900 + 900 = 1800 => Tứ giác EHBM nội tiếp (đpcm).
b) Tương tự câu a thì ^ACB = 900 => \(\Delta\)ABC vuông tại C có đường cao CH
=> AC2 = AH.AB (Hệ thức lượng trong tam giác vuông) (đpcm).
Có ^ACE = ^ACH = ^ABC (Cùng phụ ^BCH) = ^AMC (2 góc nội tiếp cùng chắn cung AC)
Xét \(\Delta\)AEC và \(\Delta\)ACM: ^ACE = ^AMC (cmt), ^CAE = ^MAC (góc chung)
=> \(\Delta\)AEC ~ \(\Delta\)ACM (g.g) => \(\frac{AC}{AM}=\frac{CE}{MC}\)=> AC.MC = AM.CE (đpcm).
c) Gọi I là tâm ngoại tiếp của \(\Delta\)CEM. Trước hết ta chỉ ra điểm I thuộc đường thẳng BC.
Thật vậy: Vì (I) ngoại tiếp \(\Delta\)CEM nên \(\Delta\)EIC cân tại I
=> ^ICE = 900 - ^EIC/2 = 900 - ^EMC = 900 - ^ABC = ^HCB = ^ECB
Do I,B nằm cùng phía so với CE nên hai tia CI,CB trùng nhau hay B,I,C thẳng hàng
Khi đó điểm I di chuyển trên đường thẳng BC. Gọi HP vuông góc BC tại P
Vì khoảng cách từ H đến I là IH nên HI < HP. Do C,B,H cố định nên HP không đổi
Vậy Max IH = HP = const.
Cách dựng điểm M thỏa mãn đề:
B1: Dựng HI vuông góc với BC tại I
B2: Vẽ đường tròn tâm I bán kính IC cắt (O) và CH lần lượt tại M0 và E
Lúc này, I là tâm ngoại tiếp của tam giác CEM và M0 là điểm M cần tìm.
Sửa: IH > HP và Min IH = PH = const. Mình nhầm dấu chút xíu :D