K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2019

\(\sqrt{x-2\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}\right)^2-2\cdot\sqrt{x-1}\cdot1+1^2}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

\(=\left|\sqrt{x-1}-1\right|\)

22 tháng 8 2021

a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\dfrac{x\sqrt{x}+y\sqrt{y}-\left(x-y\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\dfrac{x\sqrt{x}+y\sqrt{y}-x\sqrt{x}+x\sqrt{y}+y\sqrt{x}-y\sqrt{y}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\left|\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right|=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)( do \(x\ge1\))

a: Ta có: \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

\(=\sqrt{xy}\)

b: Ta có: \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

\(=\dfrac{ \left|\sqrt{x}-1\right|}{\left|\sqrt{x}+1\right|}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

29 tháng 10 2023

a: Khi x=25 thì \(A=\dfrac{5-2}{5-1}=\dfrac{3}{4}\)

b: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}-4}{1-x}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+\sqrt{x}-4}{x-1}=\dfrac{x-4}{x-1}\)

c: \(P=\dfrac{A}{B}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}:\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

P<1/2

=>P-1/2<0

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{1}{2}< 0\)

=>\(\dfrac{2\sqrt{x}+2-\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}< 0\)

=>\(\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}< 0\)

=>\(x\in\varnothing\)

13 tháng 6 2018

a, \(M=\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}\)      (ĐK : \(\forall x\in R\))

           \(=\sqrt{\left(x-2\right)^2}-\sqrt{\left(x+2\right)^2}\)

     * Nếu x\(\ge2\Rightarrow M=x-2-x-2=-4\)

     *Nếu x<2   => M=2-x-x-2=-2x

b,Để M=2\(\ne-4\)

     =>M=-2x

    =>-2x=-4

    =>x=2

__________________________________________________________________________________________

P=\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

  \(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

    \(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

     * Nếu \(x\ge2\Rightarrow P=\sqrt{x-1}+1+\sqrt{x-1}-1=2\sqrt{x-1}\)

    * Nếu x<2  =>P=\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

             VẬY.......

 Tk nha!

6 tháng 8 2016

Xét : \(\sqrt{4x-3+4\sqrt{x-1}}=\sqrt{4\left(x-1\right)+4\sqrt{x-1}+1}=\sqrt{\left(2\sqrt{x-1}+1\right)^2}=2\sqrt{x-1}+1\)

Khi đó : \(A=\left(\sqrt{x-1}-1\right)^2+2\sqrt{x-1}=x-1-2\sqrt{x-1}+1+2\sqrt{x-1}+1=x+1\)

6 tháng 8 2016
Kết quả là x-1
16 tháng 6 2023

\(A=3\left(x+2\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=3x+6\sqrt{x}-\left(x-1\right)\)

\(=3x+6\sqrt{x}-x+1\)

\(=2x+6\sqrt{x}+1\)

\(B=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-2\left(\sqrt{x}-1\right)^2\)

\(=x+3\sqrt{x}+\sqrt{x}+3-2\left(x-2\sqrt{x}+1\right)\)

\(=x+4\sqrt{x}+3-2x+4\sqrt{x}-2\)

\(=-x+8\sqrt{x}+1\)

\(C=3x-3\sqrt{x}-2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=3x-3\sqrt{x}-2+\left(\sqrt{x^2}-1\right)\)

\(=3x-3\sqrt{x}-2+x-1\)

\(=4x-3\sqrt{x}-3\)

\(D=\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)

\(=x-9-\left(2x-3\sqrt{x}-2\right)\)

\(=x-9-2x+3\sqrt{x}+2\)

\(=-x+3\sqrt{x}-7\)

\(E=\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)-2\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)

\(=\sqrt{x^2}-2^2-2\left(2x+4\sqrt{x}-\sqrt{x}-2\right)\)

\(=x-4-2\left(2x+3\sqrt{x}-2\right)\)

\(=x-4-4x-6\sqrt{x}+4\)

\(=-3-6\sqrt{x}\)

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

14 tháng 5 2021

Ta có:

\(A=x-\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{1}{\sqrt{x}+\sqrt{x-1}}\right)\)

\(A=x-\frac{\sqrt{x}+\sqrt{x-1}-\sqrt{x}+\sqrt{x-1}}{\left(\sqrt{x}-\sqrt{x-1}\right)\left(\sqrt{x}+\sqrt{x-1}\right)}\)

\(A=x-\frac{2\sqrt{x-1}}{x-x+1}\)

\(A=x-2\sqrt{x-1}\)

\(A=\left(x-1\right)-2\sqrt{x-1}+1\)

\(A=\left(\sqrt{x-1}-1\right)^2\ge0\left(\forall x\ge1\right)\)

=> đpcm

8 tháng 8 2021

1. \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\left(x>0\right)\)

\(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}+2\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(P=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

2. Để \(P>0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-2< 0\\\sqrt{x}+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\sqrt{2}\\x>\sqrt{-1}\left(L\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< \sqrt{2}\\x< \sqrt{-1}\left(L\right)\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x>\sqrt{2}\\x< \sqrt{2}\end{matrix}\right.\)

Vậy \(P>0\Leftrightarrow\left[{}\begin{matrix}x>\sqrt{2}\\x< \sqrt{2}\end{matrix}\right.\)