K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2019

Câu 1:

Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:

\(\frac{\left(x^2+\frac{1}{4}+3x\right)}{x}.\frac{\left(x^2+\frac{1}{4}-x\right)}{x}=12\)

\(\Leftrightarrow\left(x+\frac{1}{4x}+3\right)\left(x+\frac{1}{4x}-1\right)-12=0\)

Đặt \(x+\frac{1}{4x}-1=a\) ta được:

\(\left(a+4\right)a-12=0\Leftrightarrow a^2+4a-12=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{4x}-1=2\\x+\frac{1}{4x}-1=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+\frac{1}{4}=0\\x^2+5x+\frac{1}{4}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}...\\...\end{matrix}\right.\)

NV
4 tháng 6 2019

Câu 2:

\(x=\sqrt{3+\sqrt{12+2\sqrt{12}+1}}=\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)

\(=\sqrt{4+\sqrt{12}}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(y=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\Rightarrow\sqrt{y}=\sqrt{3}-1\)

\(B=\frac{2\left(4+2\sqrt{3}\right)-5\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)+3\left(4-2\sqrt{3}\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)-\left(4-2\sqrt{3}\right)}\)

\(B=\frac{8+4\sqrt{3}-10+12-6\sqrt{3}}{2-4+2\sqrt{3}}=\frac{10-2\sqrt{3}}{-2+2\sqrt{3}}=\frac{5-\sqrt{3}}{\sqrt{3}-1}\)

\(B=\frac{\left(5-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{5\sqrt{3}+5-3-\sqrt{3}}{2}=\frac{2+4\sqrt{3}}{2}=2\sqrt{3}+1\)

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

3 tháng 2 2021

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu