Cho \(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)Với \(x\ge0\)\(x\ne1\)
Rút gọn A
Tìm GTLN của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(A=\frac{\sqrt[]{x}-2}{x+\sqrt{x}+1};x=16\Rightarrow\sqrt{x}=4\)
\(A=\frac{4-2}{16+4+1}=\frac{2}{21}\)
b, Với \(x\ge0;x\ne1\)ta có :
\(B=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt[]{x}}\)
\(=\frac{x+2}{\left(\sqrt{x}\right)^2-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(1,A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)
2, Với x>1 ta có \(\frac{1}{A}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}\)
\(=\sqrt{x}-1+\frac{3}{\sqrt{x}-1}+3\)
Áp dụng bđt AM-GM ta có
\(\frac{1}{A}\ge2\sqrt{\left(\sqrt{x}-1\right).\frac{3}{\sqrt{x}-1}}+3=2\sqrt{3}+3\)
Dấu "=" xảy ra khi \(\left(\sqrt{x}-1\right)^2=3\Rightarrow\sqrt{x}=\pm\sqrt{3}+1\)
\(\Rightarrow x=\left(\pm\sqrt{3}+1\right)^2=4\pm2\sqrt{3}\)
a.
\(A=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b.Ta co:
\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{-5\left(\sqrt{x}+3\right)+17}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\le-5+\frac{17}{3}=\frac{2}{3}\)
Dau '=' xay ra khi \(x=0\)
Vay \(A_{max}=\frac{2}{3}\)khi \(x=0\)
a) Với \(x\ge0;x\ne1\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{15\sqrt{x}-11-\left(3x-9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
Vậy : \(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
b) \(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{-5\left(\sqrt{x}+3\right)+17}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)
\(A_{max}\Leftrightarrow\left(\frac{17}{\sqrt{x}+3}\right)_{max}\)
Vì \(x\ge0;x\ne1\Rightarrow\hept{\begin{cases}\sqrt{x}\ge0\\\frac{17}{\sqrt{x}+3}>0\end{cases}A_{max}\Leftrightarrow}\left(\sqrt{x}+3\right)_{min}\Leftrightarrow\sqrt{x}_{min}\Leftrightarrow x=0\)
Vậy : \(A_{max}=\frac{17}{3}\Leftrightarrow x=0\)
c,d chưa làm được .-.
c) Để \(A=\frac{1}{2}\)
<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{1}{2}\)
<=> \(-10\sqrt{x}+4=\sqrt{x}+3\)
<=> \(-11\sqrt{x}=-1\)
<=> \(\sqrt{x}=\frac{1}{11}\)
<=> \(x=\frac{1}{121}\left(tm\right)\)
Vậy ...
d) \(A\le\frac{2}{3}\)
<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\le\frac{2}{3}\)
<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}-\frac{2}{3}\le0\)
<=> \(\frac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\sqrt{x}+9}\le0\)
<=> \(\frac{-17\sqrt{x}}{3\sqrt{x}+9}\le0\)
Vì \(\hept{\begin{cases}-17\sqrt{x}\le0\\3\sqrt{x}+9>0\end{cases}}\) \(\Rightarrow\frac{-17\sqrt{x}}{3\sqrt{x}+9}\le0\)(luôn đúng)
=> Ta có ĐPCM
= \(\frac{x+2}{\sqrt{x^3}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
=\(\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)\(+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
= \(\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
= \(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(A=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\) \(ĐKXĐ:x\ge0;x\ne1;x\ne4\)
\(A=\left[\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}\right]:\left[\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}-4}{x-1}\right]\)
\(A=\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\left[\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(A=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
vậy \(A=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b)theo bài ra: \(A=\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right).\sqrt{x}=\sqrt{x}+2\)
\(\Leftrightarrow x-\sqrt{x}-\sqrt{x}-2=0\)
\(\Leftrightarrow x-2\sqrt{x}-2=0\)
\(\Leftrightarrow x-2\sqrt{x}+1-3=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2-\left(\sqrt{3}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1-\sqrt{3}=0\\\sqrt{x}-1+\sqrt{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\sqrt{3}+1\\\sqrt{x}=1-\sqrt{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\left(\sqrt{3}+1\right)^2\\x=\left(1-\sqrt{3}\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3+2\sqrt{3}+1\\x=3-2\sqrt{3}+1\end{cases}}\)
vậy......
a) Với \(x\ge0\)và \(x\ne1\)ta có:
\(P=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}\)
\(=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-\left(2x-5\sqrt{x}+3\right)-\left(x+5\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-2x+5\sqrt{x}-3-x-5\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-\left(3x-10\sqrt{x}+7\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{-\left(\sqrt{x}-1\right)\left(3\sqrt{x}-7\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-3\sqrt{x}+7}{\sqrt{x}+4}\)
b) \(P=\frac{-3\sqrt{x}+7}{\sqrt{x}+4}=\frac{-3\sqrt{x}-12+19}{\sqrt{x}+4}=\frac{-3\left(\sqrt{x}+4\right)+19}{\sqrt{x}+4}=-3+\frac{19}{\sqrt{x}+4}\)
Vì \(x\ge0\); \(x\ne1\)\(\Rightarrow\sqrt{x}+4\ge4\)
\(\Rightarrow\frac{19}{\sqrt{x}+4}\le\frac{19}{4}\)\(\Rightarrow P\le-3+\frac{19}{4}=\frac{7}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow x=0\)( thỏa mãn )
Vậy \(maxP=\frac{7}{4}\)\(\Leftrightarrow x=0\)
\(A=\)\(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\) \(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) \(-\frac{\sqrt{x}+x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+x+1\right)}\)
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
= \(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+x+1}\)
học tốt
\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
\(A=\frac{x+2}{\sqrt{x}^3-1^3}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
Ta có : x + 1 \(\ge\)\(2\sqrt{x}\)nên \(x+\sqrt{x}+1\ge3\sqrt{x}\)
\(\Rightarrow A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\le\frac{\sqrt{x}}{3\sqrt{x}}=\frac{1}{3}\)
Vậy GTLN của A là \(\frac{1}{3}\)\(\Leftrightarrow x=1\)