K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

1.b

2. o

3. o

4. a

5. r

6. c

7. r

8. u

9. o

10. c ; h

25 tháng 5 2019

1.cab bage

2.balc o ny

3.cart o on

4.pe a ch tree

5. m eal

6. c ry

7.ca r ton

8.bisc u it

9.opp o site

10.s  cratch  

16 tháng 1 2024

Ta có:

\(\dfrac{\overline{abc}}{\overline{bc}}=\dfrac{\overline{bca}}{\overline{ca}}=\dfrac{\overline{cab}}{\overline{ab}}\)

\(\Rightarrow\dfrac{100a+\overline{bc}}{\overline{bc}}=\dfrac{100b+\overline{ca}}{\overline{ca}}=\dfrac{100c+\overline{ab}}{\overline{ab}}\)

\(\Rightarrow\dfrac{100a}{\overline{bc}}+1=\dfrac{100b}{\overline{ca}}+1=\dfrac{100a}{\overline{ab}}+1\)

\(\Rightarrow\dfrac{100a}{\overline{bc}}=\dfrac{100b}{\overline{ca}}=\dfrac{100c}{\overline{ab}}\)

\(\Rightarrow\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}\)

Đặt: \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}=k\)

\(\Rightarrow a=k\overline{bc};b=k\overline{ca};c=k\overline{ab}\)

Ta có: \(\dfrac{a+b+c}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{k\overline{bc}+k\overline{ca}+k\overline{ab}}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{k\left(\overline{bc}+\overline{ca}+\overline{ab}\right)}{\overline{bc}+\overline{ca}+\overline{ab}}=k\)

Nên: \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}=\dfrac{a+b+c}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{a+b+c}{10b+c+10c+a+10a+b}=\dfrac{a+b+c}{11\left(a+b+c\right)}=\dfrac{1}{11}\)

\(\Rightarrow k=\dfrac{1}{11}\) 

Giá trị của biểu thức P là:

\(P=\dfrac{a}{\overline{bc}}+\dfrac{b}{\overline{ca}}+\dfrac{c}{\overline{ab}}=k+k+k=\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}=\dfrac{3}{11}\)

23 tháng 8 2018

Chọn B

4 tháng 7 2016

\(S=abc+bca+cab+ab+bc+ca\)

\(=100a+10b+c+100b+10c+a+100c+10a+b+10a+b+10b+c+10c+a\)

\(=122a+122b+122c\)

\(=122\left(a+b+c\right)\)

\(=61.2\left(a+b+c\right)\)

Vì 61 và 2 là các số nguyên tố nên để S là số chính phương thì trước hết a + b + c chia hết cho 61 và 2.

a + b + c > 0 ; mà a+b+c < 28; nên nó không thể chia hết cho 61.

Do đó S không thể là số chính phương.

vào đây nhé: Câu hỏi của phandangnhatminh - Toán lớp 7 - Học toán với OnlineMath

t i c k nhé!! 46457645774745756858768967969689088558768578769

10 tháng 3 2017

Ta có:

\(S=\overline{abc}+\overline{bca}+\overline{cab}\)

\(\Rightarrow S=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)

\(\Rightarrow S=100a+10b+c+100b+10c+a+100c+10a+b\)

\(\Rightarrow S=111a+111b+111c\)

\(\Rightarrow S=111\left(a+b+c\right)\)

\(\Rightarrow S=37.3\left(a+b+c\right)\)

Giả sử \(S\) là số chính phương thì S phải chứa \(37\) mủ với số chẵn

\(\Rightarrow3\left(a+b+c\right)⋮37\)

\(\Rightarrow a+b+c⋮37\)

Điều này không xảy ra vì \(1\le a+b+c\le27\)

Vậy \(S=\overline{abc}+\overline{bca}+\overline{cab}\) không phải là số chính phương (Đpcm)

10 tháng 3 2017

S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)

Vậy không tồn tại số chính phương S

6 tháng 2 2017

\(S=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)=111\left(a+b+c\right)=37.3\left(a+b+c\right)\)

\(0< a+b+c\le27\) nên \(a+b+c⋮̸37\). Mặt khác \(\left(3;37\right)=1\) nên \(3\left(a+b+c\right)⋮37\Rightarrow S\) không phải là số chính phương.

20 tháng 1 2018

\(S=\overline{abc}+\overline{bca}+\overline{cab}\)

\(=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)

\(=111\left(a+b+c\right)\)

\(=37.3\left(a+b+c\right)\)

Vì \(0< a,b,c\le9\)

\(\Rightarrow0< a+b+c\le27\)

\(\Rightarrow a+b+c⋮̸37\)

Mà (3,37) = 1

\(\Rightarrow3\left(a+b+c\right)⋮̸37\)

Vậy S không phải là số chính phương