Cho hình vuông ABCD có canh a. Gọi M,N,P,Q lần lượt nằm trên cạnh AB,BC,CD,DA. Tìm min,max của P=MN2 + NP2 + PQ2+QM2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABC có BM/BA=BN/BC=1/2
nên MN//AC và MN=1/2AC
Xét ΔADC có DP/DC=DQ/DA
nên QP//AC và QP/AC=DP/DC=1/2
=>QP=1/2AC
=>MN//PQ và MN=PQ
Xét ΔABD có AM/AB=AQ/AD=1/2
nên MQ/BD=AM/AB=1/2
=>MQ=1/2BD
Xét ΔCBD có CP/CD=CN/CB=1/2
nên NP=1/2BD
=>MQ=NP=1/2BD
mà BD=AC
nên MQ=NP=QP=MN
2: Xét tứ giác MNPQ có
MN//PQ
MN=PQ
MN=MQ
=>MNPQ là hình thoi
Ta có MNPQ là hình chữ nhật tâm O => M,N,P,Q cùng thuộc (O;OM)
a) \(\Delta ABC\)có :
MA = MB ( gt )
NB = NC ( gt )
=> MN là đường trung bình của \(\Delta ABC\)
=> \(MN//AC\)\(;\)\(MN=\frac{1}{2}AC\)
CMTT : \(PQ//AC\)\(;\)\(PQ=\frac{1}{2}AC\)
=> MN // PQ ; MN = PQ .
=> Tứ giác MNPQ là hình bình hành .
b) Theo câu a) , Ta có :
MQ // BD và \(MQ=\frac{1}{2}BD\) ; NP // BD và \(NP=\frac{1}{2}BD\)
+) Hình bình hành MNPQ là hình thoi
=> MN = MQ <=> AC = BD ( Vì \(MN=\frac{1}{2}AC\)\(MQ=\frac{1}{2}BD\))
=> ABCD là hình thang cân .
+) Hình bình hành MNPQ là hình chữ nhật
\(\Rightarrow\) \(\widehat{NMQ}=90^0\)\(\Leftrightarrow\)\(MN\perp MQ\)\(\Leftrightarrow\)\(AC\perp BD\)( Vì MN // AC ; MQ // BD )
=> Hình thang thang ABCD có 2 đường chéo vuông góc với nhau .
+) Hình bình hành MNPQ là hình vuông
\(\Rightarrow\)\(MN=MQ\)\(;\)\(\widehat{NMQ}=90^0\) \(\Leftrightarrow\)\(AC=BC\)và \(AC\perp BD\)
=> ABCD là hình thang cân có 2 đường chéo vuông góc với nhau .
a: Xét tứ giác ABPD có
AB//PD
AB=PD
Do đó: ABPD là hình bình hành
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
Gọi a là cạnh hình vuông ABCD
\(P=AM^2+BM^2+BN^2+CN^2+CP^2+DP^2+DQ^2+AQ^2\)
\(\ge\frac{\left(AM+BM\right)^2}{2}+\frac{\left(BN+CN\right)^2}{2}+\frac{\left(CP+DP\right)^2}{2}+\frac{\left(AQ+DQ\right)^2}{2}\)
( do \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) )
\(=4\cdot\frac{a^2}{2}=2a^2\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}AM=BM\\BN=CN\\CP=DP\\AQ=DQ\end{matrix}\right.\)
<=> M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA
Vậy \(P_{min}=2a^2\) <=> M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA
\(P\le\left(AM+BM\right)^2+\left(BN+CN\right)^2+\left(CP+DP\right)^2+\left(DQ+AQ\right)^2\)\(=4a^2\)
Dấu "=" xảy ra \(\left\{{}\begin{matrix}2AM\cdot BM=0\\2BN\cdot CN=0\\2CP\cdot DP=0\\2DQ\cdot AQ=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}M\equiv A\\M\equiv B\end{matrix}\right.\\\left[{}\begin{matrix}N\equiv B\\N\equiv C\end{matrix}\right.\\\left[{}\begin{matrix}P\equiv C\\P\equiv D\end{matrix}\right.\\\left[{}\begin{matrix}Q\equiv D\\Q\equiv A\end{matrix}\right.\end{matrix}\right.\) (*)
Vậy Max P = 4a^2 <=> (*)