Cho x và y là 2 số thỏa mãn đồng thời: x>= 0, y>=0, 2x+y<=4. Tìm GTLN của biểu thức: K= x^2-2x -y
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TK
0
TT
1
LN
31 tháng 3 2019
Không biết đúng k nữa:
\(2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)
\(=\left(2x^2+\frac{2}{x^2}\right)+\left(3y^2+\frac{3}{y^2}\right)+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\ge2\cdot2+3\cdot2+9=19\)
Vậy Min=19 khi x=y=1
Ta cá:\(K=x^2-2\times x-y=x^2-\left(2\times x+y\right)\)
Để K đạt GTLN
Suy ra x^2 lớn nhất nên x lớn nhất
2x+y nhỏ nhất nên y nhỏ nhất(2x Ko nhỏ nhất vi x lớn nhất nên 2x lớn nhất)
Mà \(y\ge0\)
Ta chọn y=0,thay vào 2x+y ta đc
\(2\times x+0\le4\)
\(\Rightarrow2\times x\le4\)
\(\Rightarrow x\le2\)
Mà x lớn nhất nên ta chọn x=2 do đá k sẽ bằng
\(K=2^2-2\times2-0=4-4=0\)
Vậy K đạt GTLN là 0 tại x =2 và y=0
nhớ h cho mk nha