Viết thành dạng tích: A)x^2-6x-y^2+9 B)25-4x^2-4xy-y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-y-3\right)\left(x+y-3\right)\)
b: Ta có: \(x^3+4x^2+4x\)
\(=x\left(x^2+4x+4\right)\)
\(=x\left(x+2\right)^2\)
c: Ta có: \(4xy-4x^2-y^2+9\)
\(=-\left(4x^2-4xy+y^2-9\right)\)
\(=-\left(2x-y-3\right)\left(2x-y+3\right)\)
a)\(6x-9-x^2\)
\(=-\left(x^2+6x+9\right)\)
\(=-\left(x+3\right)^2\)
b)\(x^2+4y^2+4xy\)
\(=\left(x+2y\right)^2\)
c)\(x^2+8x+16\)
\(=\left(x+4\right)^2\)
d)\(9x^2-12xy+4y^2\)
\(=\left(3x-2y\right)^2\)
e)\(-25x^2y^2+10xy-1\)
\(=-\left(25x^2y^2-10xy+1\right)\)
\(=-\left(5xy-1\right)^2\)
f)\(4x^2-4x+1\)
\(=\left(2x-1\right)^2\)
j)\(x^2+6x+9\)
\(=\left(x+3\right)^2\)
h)\(9x^2-6x+1\)
\(=\left(3x-1\right)^2\)
#H
a, 6x - 9 - x2 = - x2 + 6x - 9 = - (x2 - 6x + 9) = - (x - 3)2
b, x2 + 4y2 + 4xy = x2 + 2. x . 2y + (2y)2 = (x + 2y)2
c, x2 + 8x + 16 = x2 + 2 . x . 4 + 42 = (x + 4)2
d, 9x2 - 12xy + 4y2 = (3x)2 - 2 . 3x . 2y + (2y)2 = (3x - 2y)2
e, - 25x2y2 + 10xy - 1 = - (25x2y2 - 10xy + 1) = - [(5xy)2 - 2 . 5xy + 1] = - (5xy - 1)2
f, 4x2 - 4x + 1 = (2x)2 - 2 . 2x + 1 = (2x - 1)2
j, x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
h, 9x2 - 6x + 1 = (3x)2 - 2 . 3x + 1 = (3x - 1)2
phân tích thành nhân tử:
\(x^2-9=x^2-3^2=\left(x+3\right)\left(x-3\right)\)
\(4x^2-25=\left(2x\right)^2-5^2=\left(2x+5\right)\left(2x-5\right)\)
\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)
\(9x^2+6xy+y^2=\left(3x\right)^2+2\cdot3x\cdot1+y^2=\left(3x+y\right)^2\)
\(x^2+4y^2+4xy=x^2+2\cdot x\cdot2y+\left(2y\right)^2=\left(x+2y\right)^2\)
a. \(x^3-0.25x=0\Rightarrow x\left(x^2-\frac{1}{4}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-\frac{1}{4}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{1}{4}\end{cases}}}\) \(\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\end{cases}}\)=> \(x\in\left\{0;\frac{1}{2};\frac{-1}{2}\right\}\)
b, \(x^2-10x=-25\)\(\Rightarrow x^2-10x+25=0\)
\(\Rightarrow\left(x-5\right)^2=0\Rightarrow x-5=0\Rightarrow x=5\)
a, \(x^2-9=x^2-3x+3x-9\)
\(=x\left(x-3\right)+3\left(x-3\right)=\left(x-3\right)\left(x+3\right)\)
b, \(4x^2-25=\left(2x\right)^2-5^2=\left(2x-5\right)\left(2x+5\right)\)
c, \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
d, \(9x^2+6xy+y^2=\left(3x\right)^2+2\left(3xy\right)+y^2\) \(=\left(3x+y\right)^2\)
e, \(6x-9-x^2=6x-18+9-x^2\) \(=6\left(x-3\right)-\left(x-3\right)\left(x+3\right)\)
\(=\left(x-3\right)\left(6-x-3\right)=\left(x-3\right)\left(3-x\right)\)
f, \(x^2+4y^2+4xy=x^2+2\left(2xy\right)+\left(2y\right)^2\)
\(\left(x+2y\right)^2\)
\(\)
a) \(x^2-81=\left(x-9\right)\left(x+9\right)\)
b) \(4x^2-25=\left(2x-5\right)\left(2x+5\right)\)
c) \(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
d) \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
e) \(6x-9-x^2=-\left(x^2-6x+9\right)=-\left(x-3\right)^2\)
f) \(x^2-4x^2+4y^2+4xy=\left(x^2+4xy+4y^2\right)-4x^2=\left(x+2y\right)^2-4x^2\\ =\left(x+2y+2x\right)\left(x+2y-2x\right)=\left(3x+2y\right)\left(2y-x\right)\)
g) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)=2a\left(a^2+3b^2\right)\)
h) \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\\ =\left(4x+2\right)\cdot2x=4x\left(2x+1\right)\)
b)\(4x^2+4x+5+y^2-4y\)
\(=\left[\left(2x\right)^2+4x+1\right]+\left(y^2-4y+4\right)\)
\(=\left(2x+1\right)^2+\left(y-2\right)^2\)
c) \(4x^2+5y^2+4xy-12y+9\)
\(=\left(4x^2+4xy+y^2\right)+\left(4y^2-12y+9\right)\)
\(=\left(2x+y\right)^2+\left(2y-3\right)^2\)
\(1,=\left(x-2\right)\left(5-y\right)\\ 2,=2\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(2x-2y-z\right)\\ 3,=5xy\left(x-2y\right)\\ 4,=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-4z^2\right]\\ =3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\\ 6,=-\left(6x^2-3x-4x+2\right)=-\left(2x-1\right)\left(3x-2\right)\\ 7,=\left(2x+y\right)\left(2x+y+x\right)=\left(2x+y\right)\left(3x+y\right)\\ 8,=\left(x-y\right)\left(x+5\right)\\ 9,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\\ 10,=\left(x^2-9\right)x=x\left(x-3\right)\left(x+3\right)\\ 11,=\left(x-2\right)\left(y+1\right)\\ 12,=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\\ 13,=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)
a. Ta có: x2+y2-2x+4y+5=0
⇌(x-1)2+(y-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
b. Ta có: 4x2+y2-4x-6y+10=0
⇌ (2x-1)2+(y-3)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3\end{matrix}\right.\)
c.Ta có: 5x2-4xy+y2-4x+4=0
⇌(2x-y)2+(x-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=2\end{matrix}\right.\)
d.Ta có: 2x2-4xy+4y2-10x+25=0
⇌ (x-2y)2+(x-5)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{2}\\x=5\end{matrix}\right.\)
\(A,=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-y-3\right)\left(x+y-3\right)\\ B,=25-\left(4x^2+4xy+y^2\right)=25-\left(2x+y\right)^2=\left(5-2x-y\right)\left(5+2x+y\right)\)
A) = (x^2-6x+9)-y^2
= (x-3)^2-y^2
= (x-y-3)(x+y-3)
B) = 5^2 - (2x+y)^2
= (5-2x-y)(5+2x+y)