K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2019

Mk làm như thế này có đúng không ta?

Do \(\left|x-19\right|\ge0\)

\(\left|2y-10\right|\ge0\)

\(\Rightarrow\left|x-19\right|+\left|2y-10\right|\ge0\)

\(\Rightarrow\left|x-19\right|+\left|2y-10\right|+2019\ge0+2019=2019\)

Dấu " = " xảy ra :

\(\hept{\begin{cases}x-19=0\\2y-10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=19\\y=5\end{cases}}\)

Do đó : x = 19 , y = 5 

Thay x = 19 , y = 5 ta có : 

\(\left|19-19\right|+\left|2\cdot5-10\right|+2019\)

\(=0+0+2019=2019\)

Vậy giá trị nhỏ nhất của S là 2019

23 tháng 5 2019

Mk thi chưa làm xong GTNN =_=" , ko bt bao nhiêu điểm Toán nữa

8 tháng 11 2021

TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc

28 tháng 11 2016

\(A=\left|x-3\right|+\left|y+3\right|+2016\)

\(\left|x-3\right|\ge0\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)

Dấu ''='' xảy ra khi \(x-3=y+3=0\)

\(x=3;y=-3\)

\(MinA=2016\Leftrightarrow x=3;y=-3\)

\(\left(x-10\right)+\left(2x-6\right)=8\)

\(x-10+2x-6=8\)

\(3x=8+10+6\)

\(3x=24\)

\(x=\frac{24}{3}\)

x = 8

17 tháng 11 2016

Bài này làm phức tạp nên để khi khác làm

16 tháng 5 2021

ta có x+y=\(\sqrt{10}\)=>(x+y)^2=10

A=(x^4+1)(y^4+1)

=x^4.y^4+1+x^4+y^4+2x^2.y^2-2x^2.y^2

=x^4.y^4+1+(x^2+y^2)^2-2x^y^2=x^4.y^4+1+[(x+y)^2-2xy]

=x^4.y^4+1+(10-2xy)-2x^2.y^2

=x^4.y^4+1+100-40xy+4.x^2.y^2-2x^2.y^2

=x^4.y^4+101-40xy+2.x^2.y^2

=(x^4.y^4-8.x^2.y^2+16)+(10.x^2.y^2-40xy+40)+45

=(x^2.y^2-4)^2+10.(xy-2)^2+45\(\ge\)0

dấu = xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y=\sqrt{10}\\x.y=2\end{matrix}\right.\)

vậy Min A=45

 

 

 

16 tháng 5 2021

\(\left\{{}\begin{matrix}x+y=\sqrt{10}\\x.y=2\end{matrix}\right.\)là nghiệm pt x^2-\(\sqrt{10}\)x+2

=>\(\Delta\)=(-\(\sqrt{10}\))^2-4.2=2>0

=>\(\left\{{}\begin{matrix}x=\dfrac{\sqrt{10}-\sqrt{2}}{2}\\y=\dfrac{\sqrt{10}+\sqrt{2}}{2}\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{10}-\sqrt{2}}{2}\\y=\dfrac{\sqrt{10}+\sqrt{2}}{2}\end{matrix}\right.\)

 

6 tháng 5 2019

Vì |x-y| 0 với mọi x,y;|x+1|0 vs mọi x=>A2016 vs mọi x,y

=> A đạt giá trị nhỏ nhất khi:{

|x−y|=0
|x+1|=0

⇔{

x−y=0
x+1=0

⇔{

x=y
x=−1

vậy với x=y=-1 thì S đạt giá trị nhỏ nhất là 2016

6 tháng 5 2019

\(S=\left|x+2\right|+\left|2y-10\right|+2016\)

\(S\ge2016\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)

\(P=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)

Ta có \(x^2+y^2=\left(x+y\right)^2-2xy=10-2xy\)

\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(10-2xy\right)^2-2x^2y^2=100-40xy+2x^2y^2\)

\(\Rightarrow P=\left(xy\right)^4+101-40xy+2x^2y^2\)

\(=\left[\left(xy\right)^4-8\left(xy\right)^2+16\right]+10\left[\left(xy\right)^2-4xy+4\right]+45\)

\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\)

\(\Rightarrow P\ge45\)

Dấu "=" xảy ra khi xy=2

Lại có \(x+y=\sqrt{10}\)

\(\Rightarrow x=\sqrt{10}-y\Rightarrow xy=\sqrt{10}y-y^2=2\)

\(\Rightarrow y^2-\sqrt{10y}+2=0\)

Ta có \(\Delta=10-8=2\)

\(\Rightarrow y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

\(\Rightarrow x=\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

Vậy giá trị nhỏ nhất của P là 45 khi \(\hept{\begin{cases}x=\frac{\sqrt{10}-\sqrt{2}}{2}\\y=\frac{\sqrt{10}+\sqrt{2}}{2}\end{cases}}\)

13 tháng 3 2020

Bài này nhiều bạn đăng rồi, vô lục câu hỏi của CTV Lê Tài Bảo Châu đó, kéo xuống là thấy.

13 tháng 3 2020

cảm ơn bạn

10 tháng 5 2022

refer

10 tháng 5 2022

Hai đồ thị \(y=\left(3m+2\right)x+5\) và \(y=-x-1\) cắt nhau

\(\Rightarrow3m+2\ne-1\Rightarrow m\ne-1\)

Khi đó ta có giao điểm 2 đồ thị là \(A=\left(x;y\right)=\left(x;-x-1\right)\)

\(P=y^2+2x-2019=\left(-x-1\right)^2+2x-2019=x^2+4x-2018\\ =\left(x+2\right)^2-2022\ge-2022\)

Dấu = xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\Leftrightarrow y=1\)

\(\Rightarrow1=\left(3m+2\right)\left(-2\right)+5\Rightarrow-6m=0\Rightarrow m=0\left(TM\right)\)