Cmr với mọi m ≤ 1 thì \(f\left(x\right)=x^3-3\left(2m-1\right)x^2+\frac{1}{2}\left(m+5\right)x+1-2m\ge0\) với mọi x ≥ 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Delta=4\left(m-1\right)^2-4\left(-2m-3\right)=4m^2-8m+4+8m+12\\ \Delta=4m^2+16>0\left(đpcm\right)\\ b,\Delta=\left(2m-1\right)^2-4\left(2m-2\right)=4m^2-4m+1-8m+8\\ \Delta=4m^2-12m+9=\left(2m-3\right)^2\ge0\left(đpcm\right)\\ c,Sửa:x^2-2\left(m+1\right)x+2m-2=0\\ \Delta=4\left(m+1\right)^2-4\left(2m-2\right)=4m^2+8m+4-8m+8\\ \Delta=4m^2+12>0\left(đpcm\right)\\ d,\Delta=4\left(m+1\right)^2-4\cdot2m=4m^2+8m+4-8m\\ \Delta=4m^2+4>0\left(đpcm\right)\\ e,\Delta=4m^2-4\left(m+7\right)=4m^2-4m+7=\left(2m-1\right)^2+6>0\left(đpcm\right)\\ f,\Delta=4\left(m-1\right)^2-4\left(-3-m\right)=4m^2-8m+4+12+4m\\ \Delta=4m^2-4m+16=\left(2m-1\right)^2+15>0\left(đpcm\right)\)
a/ \(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta=\left(3+m\right)^2-8\left(m+1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m^2-2m+1\le0\end{matrix}\right.\) \(\Rightarrow m=1\)
b/ - Với \(m=-1\Rightarrow-2x+2< 0\Rightarrow x>1\) (ko thỏa mãn)
Với \(m\ne-1\Rightarrow\Delta=\left(m-1\right)^2\ge0\) \(\forall m\)
Để \(f\left(x\right)< 0\) với mọi \(x< -1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1< 0\\-1< x_1< x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\\frac{2}{m+1}+\frac{m+3}{m+1}+1>0\\\frac{m+3}{m+1}>-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\2m+6< 0\\3m+5< 0\end{matrix}\right.\) \(\Rightarrow m< -3\)
a/ \(y'=3mx^2-2\left(m+1\right)x+3m\)
Xet m=0 ko thoa man
Xet m khac 0
\(y'\ge0\Leftrightarrow\left(m+1\right)^2-9m^2\le0\Leftrightarrow8m^2-2m-1\ge0\)
\(\Leftrightarrow m^2+8\le0\left(vl\right)\) => ko ton tai m thoa man
b/ \(y'=mx^2-2mx+2m-1\)
m=0 ko thoa man
Xet m khac 0
\(y'\ge0\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-m\left(2m-1\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-m\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m\ge1\)
1.
\(f'\left(x\right)=3x^2-6mx+3\left(2m-1\right)\)
\(f'\left(x\right)-6x=3x^2-3.2\left(m+1\right)x+3\left(2m-1\right)>0\)
\(\Leftrightarrow x^2-2\left(m+1\right)x+2m-1>0\)
\(\Leftrightarrow x^2-2x-1>2m\left(x-1\right)\)
Do \(x>2\Rightarrow x-1>0\) nên BPT tương đương:
\(\dfrac{x^2-2x-1}{x-1}>2m\Leftrightarrow\dfrac{\left(x-1\right)^2-2}{x-1}>2m\)
Đặt \(t=x-1>1\Rightarrow\dfrac{t^2-2}{t}>2m\Leftrightarrow f\left(t\right)=t-\dfrac{2}{t}>2m\)
Xét hàm \(f\left(t\right)\) với \(t>1\) : \(f'\left(t\right)=1+\dfrac{2}{t^2}>0\) ; \(\forall t\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t\right)>f\left(1\right)=-1\Rightarrow\) BPT đúng với mọi \(t>1\) khi \(2m< -1\Rightarrow m< -\dfrac{1}{2}\)
2.
Thay \(x=0\) vào giả thiết:
\(f^3\left(2\right)-2f^2\left(2\right)=0\Leftrightarrow f^2\left(2\right)\left[f\left(2\right)-2\right]=0\Rightarrow\left[{}\begin{matrix}f\left(2\right)=0\\f\left(2\right)=2\end{matrix}\right.\)
Đạo hàm 2 vế giả thiết:
\(-3f^2\left(2-x\right).f'\left(2-x\right)-12f\left(2+3x\right).f'\left(2+3x\right)+2x.g\left(x\right)+x^2.g'\left(x\right)+36=0\) (1)
Thế \(x=0\) vào (1) ta được:
\(-3f^2\left(2\right).f'\left(2\right)-12f\left(2\right).f'\left(2\right)+36=0\)
\(\Leftrightarrow f^2\left(2\right).f'\left(2\right)+4f\left(2\right).f'\left(2\right)-12=0\) (2)
Với \(f\left(2\right)=0\) thế vào (2) \(\Rightarrow-12=0\) ko thỏa mãn (loại)
\(\Rightarrow f\left(2\right)=2\)
Thế vào (2):
\(4f'\left(2\right)+8f'\left(2\right)-12=0\Leftrightarrow f'\left(2\right)=1\)
\(\Rightarrow A=3.2+4.1\)
a.
- Với \(m=\pm1\Rightarrow-6x=1\Rightarrow x=-\dfrac{1}{6}\) có nghiệm
Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)
- Với \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\Rightarrow1-m^2>0\)
\(f\left(0\right)=-1< 0\)
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left[\left(1-m\right)^2x^3-6x-1\right]\)
\(=\lim\limits_{x\rightarrow-\infty}x^3\left(1-m^2-\dfrac{6}{m^2}-\dfrac{1}{m^3}\right)=-\infty\left(1-m^2\right)=+\infty\) dương
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)
- Với \(-1< m< 1\Rightarrow1-m^2< 0\)
\(\lim\limits_{x\rightarrow+\infty}\left[\left(1-m^2\right)x^3-6x-1\right]=\lim\limits_{x\rightarrow+\infty}x^3\left[\left(1-m^2\right)-\dfrac{6}{x^2}-\dfrac{1}{x^3}\right]=+\infty\left(1-m^2\right)=+\infty\) dương
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)
Vậy pt đã cho có nghiệm với mọi m
b. Để chứng minh pt này có đúng 1 nghiệm thì cần áp dụng thêm kiến thức 12 (tính đơn điệu của hàm số). Chỉ bằng kiến thức 11 sẽ ko chứng minh được
c.
Đặt \(f\left(x\right)=\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5\)
Do \(f\left(x\right)\) là hàm đa thức nên \(f\left(x\right)\) liên tục trên R
\(f\left(2\right)=4-5=-1< 0\)
\(f\left(3\right)=6-5=1>0\)
\(\Rightarrow f\left(2\right).f\left(3\right)< 0\) với mọi m
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (2;3) với mọi m
Hay pt đã cho luôn luôn có nghiệm