K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

Ta có: \(A=|x-2|+|x-13|\)

              \(=|x-2|+|13-x|\ge|x-2+13-x|\)

             Hay   \(A\ge11\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right).\left(13-x\right)\ge0\)

Xảy ra 2 TH là cả hai số x-2 và 13-x lớn hơn hoặc bằng 0 và TH2 là nhỏ hơn 0.

 Tìm nốt x trong khoảng Mà nó là SCp rồi chắt lọc ra

\(\left|x-\dfrac{2}{3}\right|-4\ge-4\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)

b) Ta có: \(\left|x+4\right|\ge0\forall x\)

\(\Leftrightarrow\left|x+4\right|+1996\ge1996\forall x\)

Dấu '=' xảy ra khi x=-4

1 tháng 7 2021

a, Ta có: \(sinx\in\left[-1;1\right]\Rightarrow max=15\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)

b, \(y=1-3\sqrt{1-cos^2x}=1-3\sqrt{sin^2x}=1-3\left|sinx\right|\ge1\)

\(max=1\Leftrightarrow sinx=0\Leftrightarrow x=k\pi\)

26 tháng 9 2021

Mode 5 3 trên máy tính Casio fx-570 :

a) a=1,b=-2,c=-4

b) a=1,b=-2,c=7 

 

 

 

28 tháng 4

a)

Xét x=0 => A = 1 không là số nguyên tố

Xét x=1 => A= 3 là số nguyên tố (chọn)

Xét x>1

Có A = x14+ x13 + 1 = x14 - x+ x13 - x + x+ x + 1

A = x2(x12-1) + x(x12-1) + x2+x+1

A = (x2+x)(x3*4-1) + x2 + x + 1

Có x3*4 chia hết cho x3

=> x3*4-1 chia hết cho x3 - 1 = (x-1)(x2+x+1)

=> x3*4-1 chia hết cho x2+x+1

=>A chia hết cho x2+x+1 mà x2+x+1 >0 (do x>1)

=> A là hợp số với mọi x > 1 (do A chia hết cho x2+x+1)

 

13 tháng 5 2016

bài 2:

a)đặt n²-n+13=a²

=> 4n²-4n+52=4a²

=> (4n²-4n+1) +51=4a²

=>(2n-1)²+51=4a²

=>4a²-(2n-1)²=51

=>(2a-2n+1)(2a+2n-1)=51

vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)

=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3

với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12

với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)

KL:n=-12

13 tháng 5 2016

bài 2:

a)đặt n²-n+13=a²

=> 4n²-4n+52=4a²

=> (4n²-4n+1) +51=4a²

=>(2n-1)²+51=4a²

=>4a²-(2n-1)²=51

=>(2a-2n+1)(2a+2n-1)=51

vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)

=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3

với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12

với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)

KL:n=-12

10 tháng 4 2021

\(A=\left|x-2\right|+\left|x-5\right|\\ A=\left|x-2\right|+\left|5-x\right|\)

Có \(\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|\\ \Leftrightarrow A\ge\left|3\right|=3\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)\left(5-x\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2\ge0\\5-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2\le0\\5-x\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\le5\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\ge5\end{matrix}\right.\end{matrix}\right.\)

Trường hợp bên dưới vô lý, loại. Vậy GTNN của \(A=3\) khi \(2\le x\le5\)

10 tháng 4 2021

Áp dụng BĐT `|A|+|B|>=|A+B|` và dấu = `<=>AB>=0`

`=>A=|x-2|+|5-x|>=|x-2+5-x|=3`

Dấu "=" `<=>(x-2)(5-x)>=0`

`<=>(x-2)(x-5)<=0`

`<=>2<=x<=5`