Từ một điểm M ở ngoài đường tròn (O), kẻ tiếp tuyến MA,MB với (O) (A,B là tiếp điểm). Gọi H là giao điểm của AB với OM; I là trung điểm của MH. Đường thẳng AI cắt (O) tại điêm K (K khác A)
a) Chứng minh KH vuông góc AI
b) Tính số đo góc MKB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của BA(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại trung điểm H của AB
b: Xét (O) có
\(\widehat{MAP}\) là góc tạo bởi tiếp tuyến AM và dây cung AP
\(\widehat{AQP}\) là góc nội tiếp chắn cung AP
Do đó: \(\widehat{MAP}=\widehat{AQP}\)
=>\(\widehat{MAP}=\widehat{MQA}\)
Xét ΔMAP và ΔMQA có
\(\widehat{MAP}=\widehat{MQA}\)
\(\widehat{AMP}\) chung
Do đó: ΔMAP đồng dạng với ΔMQA
=>\(\dfrac{MA}{MQ}=\dfrac{AP}{QA}\left(1\right)\)
Xét (O) có
ΔQAP nội tiếp
QP là đường kính
Do đó: ΔQAP vuông tại A
Xét ΔHAP vuông tại H và ΔHQA vuông tại H có
\(\widehat{HAP}=\widehat{HQA}\left(=90^0-\widehat{HPA}\right)\)
Do đó: ΔHAP đồng dạng với ΔHQA
=>\(\dfrac{HA}{HQ}=\dfrac{AP}{QA}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{MA}{MQ}=\dfrac{HA}{HQ}\)
=>\(MA\cdot HQ=MQ\cdot HA\)
a: Xét tứ giác MAOB có
\(\widehat{OAM}+\widehat{OBM}=180^0\)
Do đó: MAOB là tứ giác nội tiếp
a) Ta có
MAMA là tiếp tuyến của đường tròn (gt)
⇒⇒ MA⊥OAMA⊥OA => ˆMAO=90°MAO^=90°
MBMB là tiếp tuyến của đường tròn (gt)
⇒⇒ MB⊥OBMB⊥OB => ˆMBO=90°MBO^=90°
Xét tứ giác MAOBMAOB có ˆMAO+ˆMBO=180°MAO^+MBO^=180° mà chúng ở vị trí đối nhau
⇒⇒ tứ giác MAOBMAOB là tứ giác nội tiếp
⇒⇒ M,A,O,BM,A,O,B cùng thuộc 11 đường tròn
b) Ta có MA,MBMA,MB là 2 tiếp tuyến cắt nhau tại MM
⇒⇒ MA=MBMA=MB ⇒⇒ MOMO là tia phân giác ˆAMBAMB^
Xét ΔAMI∆AMI và ΔBMI∆BMI
Có MA=MBMA=MB (cmt)
ˆAMI=ˆBMIAMI^=BMI^ (cmt)
MIMI chung => ΔAMI=ΔBMI∆AMI=∆BMI (c.g.c)
⇒⇒ ˆAIM=ˆBIMAIM^=BIM^
Mà ˆAIM+ˆBIM=180°AIM^+BIM^=180° (kề bù)
⇒⇒ ˆAIM=180°2=90°AIM^=180°2=90°
⇒⇒ MO⊥ABMO⊥AB tại II
c) Ta có: ˆBDC=90°BDC^=90°(Góc nội tiếp chắn đường kính BCBC)
⇒⇒ ΔBDC∆BDC vuông tại D⇒BD⊥CDD⇒BD⊥CD
ΔBCM⊥BΔBCM⊥B (do BMBM là tiếp tuyến của (O))
Hệ thức lượng vào ΔBCM⊥B,BD⊥CDΔBCM⊥B,BD⊥CD (chứng minh trên) ta có:
BM2=MD.MCBM2=MD.MC (1)
Xét ΔMAO∆MAO vuông tại A
AI⊥OMAI⊥OM (Vì AB⊥OMAB⊥OM) ⇒⇒ AM2=MI.MOAM2=MI.MO (2)
mà AM=BMAM=BM (tính chất hai tiếp tuyến cắt nhau) (3)
Từ (1), (2) và (3) ⇒⇒ MD.MC=MA2=MI.MOMD.MC=MA2=MI.MO
d) Xét ΔEOM∆EOM cà ΔIOF∆IOF
ˆEOMEOM^ chung
ˆOIF=ˆOEM=90°OIF^=OEM^=90° (gt &cm)
⇒⇒ ΔEOM∼ΔIOF∆EOM∼∆IOF (g.g)
⇒⇒ OEOI=OMOFOEOI=OMOF (tỉ số đồng dạng)
⇒⇒ OE.OF=OM.OIOE.OF=OM.OI
Lại có ΔOAM∆OAM vuông tại AA
Mà AI⊥OMAI⊥OM (cmt)
⇒⇒ OA2=OI.OMOA2=OI.OM Mà OA=OC=ROA=OC=R
⇒⇒ OC2=OF.OEOC2=OF.OE
⇒⇒ OCOE=OFOCOCOE=OFOC
Xét ΔOCF∆OCF và ΔOCE∆OCE có
ˆCOFCOF^ chung
OCOE=OFOCOCOE=OFOC
⇒⇒ ΔOCF∼ΔOEC∆OCF∼∆OEC (c.g.c)(c.g.c)
⇒⇒ ˆOFC=ˆOCE=90°OFC^=OCE^=90°
⇒⇒ OC⊥CFOC⊥CF tại C
⇒⇒ FCFC là tiếp tuyến của đường tròn
(ĐPCM)
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
hay MO⊥AB
P/S: Không hiểu Sketpad sao mà lúc nào vẽ hình cũng siêu to khổng lồ
a) Vẽ đường kính AC của đường tròn (O)
Ta có ^ABC = 900 (góc nội tiếp chắn nửa đường tròn)
MA, MB là các tiếp tuyến của đường tròn (O;R)
=> MA = MB, MP là tia phân giác của ^AMB (t/c hai tiếp tuyến cắt nhau)
=> \(\Delta\)MAB cân tại M , MH là đường phân giác
=> MH là đường cao, đường trung tuyến của \(\Delta\)MAB
=> MO\(\perp\)AB, AH = HB = \(\frac{AB}{2}\)
Xét \(\Delta\)HAM và \(\Delta\)BCA có:
^AHM = ^CBA ( =900)
^HAM = ^BCA (hệ quả tạo bởi góc tiếp tuyến và dây cung)
Do đó \(\Delta\)HAM ~ \(\Delta\)BCA (g.g) => \(\frac{AH}{BC}=\frac{MH}{AB}\)
=> \(\frac{AH}{BC}=\frac{2IH}{2HB}\Rightarrow\frac{AH}{BC}=\frac{MH}{AB}\)
Xét \(\Delta\)AHI và \(\Delta\)CHB có:
^AHI = ^CHB (=900)
\(\frac{AH}{BC}=\frac{IH}{HB}\)
Do đó \(\Delta AHI~\Delta CBH\left(c.g.c\right)\)=> ^IAH = ^HCB
Mà ^IAH = ^KCB ( hai góc nội tiếp cùng chắn cung BK)
Do đó ^HCB = ^KCB => Hai tia CH, CK trùng nhau
=> C, H, K thẳng hàng
Mà ^AKC = 900 (góc nội tiếp chắn nửa đường tròn.
Vậy \(HK\perp\)AI (đpcm)
b) Ta có ^KHM = ^KAB (cùng phụ với ^KHA)
và ^KBM = ^KAB (hai góc nội tiếp cùng chắn cung BK)
Do đó ^KHM = ^KBM => Tứ giác KHBM nội tiếp
=> ^MKB = ^MHB
Mà ^MHB = 900 (OM vuông góc AB)
Vậy ^MKB = 900
Đề bài:
Từ một điểm M ở ngoài đường tròn (O), kẻ tiếp tuyến MA,MB với (O) (A,B là tiếp điểm). Gọi H là giao điểm của AB với OM; I là trung điểm của MH. Đường thẳng AI cắt (O) tại điêm K (K khác A)
a) Chứng minh KH vuông góc AI
b) Tính số đo góc MKB
Trả lời: ...