Viết phương trình đường thẳng (∆) song song (d) và tiếp xúc (P).
(d):y=\(\frac{x}{2}+2\)
(P):y=\(\frac{1}{4}x^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(x=-1\Rightarrow y=1\Rightarrow A\left(-1;1\right)\)
\(x=2\Rightarrow y=4\Rightarrow B\left(2;4\right)\)
Phương trình đường thẳng AB có dạng \(y=ax+b\) đi qua A và B nên ta có hệ:
\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\Rightarrow y=x+2\left(AB\right)\)
2.
\(\left(d\right)//\left(AB\right)\Rightarrow x-y+c=0\left(d\right)\)
Phương trình hoành độ giao điểm của \(\left(d\right);\left(P\right)\):
\(x+c=x^2\)
\(\Leftrightarrow x^2-x-c=0\)
\(\Delta=1+4c=0\Leftrightarrow c=-\dfrac{1}{4}\)
\(\Rightarrow x-y-\dfrac{1}{4}=0\left(d\right)\)
1.
Trục Ox có pt \(y=0\) nên đường song song với nó là \(y=4\)
2.
\(\overrightarrow{MI}=\left(1;-2\right)\)
Đường thẳng tiếp xúc với đường tròn tâm I tại M đi qua M và vuông góc MI nên nhận \(\overrightarrow{MI}\) là 1 vtpt
Phương trình:
\(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)
vì D1 song song vs D
=> D1 = 2x + b
xét pt hoành độ giao điểm ta có
-x^2 = 2x +b <=> x^2 + 2x + b = 0
xét đen ta của phương trình trên ta đc: 4-4b
mà D1 tiếp xúc vs P Nên 4 - 4b = 0 => b=1
vậy đg thẳng D1 có dạng y= 2x+1
a, bạn tự vẽ nhé
b, Gọi ptđt (D1) có dạng y = ax + b
(D1) // (D) \(\hept{\begin{cases}a=\frac{1}{2}\\b\ne2\end{cases}}\)
=> (D1) : y = x/2 + b
Hoành độ giao điểm tm pt
\(\frac{x^2}{4}=\frac{x}{2}+b\Leftrightarrow x^2=2x+4b\Leftrightarrow x^2-2x-4b=0\)
\(\Delta'=1-\left(-4b\right)=1+4b\)
Để (D1) tiếp xúc (P) hay pt có nghiệm kép
\(1+4b=0\Leftrightarrow b=-\frac{1}{4}\)
suy ra \(\left(D1\right):y=\frac{x}{2}-\frac{1}{4}\)
toạ độ M là tương giao của cái nào bạn ?
Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm của tiếp tuyến d với đồ thị (C). Khi đó \(y'\left(x_0\right)=3\)
Ta có phương trình :
\(\frac{3}{\left(x_0+2\right)^2}=3\Leftrightarrow\left(x_0+2\right)^2=1\Leftrightarrow\begin{cases}x_0=-1\\x_0=-3\end{cases}\)
Phương trình tiếp tuyến d của đồ thị (C) tại các điểm (-1;1) và (-3;5) lần lượt là
\(y=3x+2;y=3x+14\)
Từ giả thiết ta được \(y=3x+2\)