500×10+555=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
500 + 500 = 1000
600 + 600 = 1200
333 + 333 = 666
555 + 555 =1110
KB nhé
404 < 440 200 + 5 < 250
765 > 756 440 - 40 > 399
899 < 900 500 + 50 + 5 = 555
555^2≡5 (mod 10)
555"^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra
333^555^777 đồng dư với 333^5
Do 333^5=3332.3333≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2)Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.
Ta có :
\(555^2\equiv5\left(mod10\right)\)
\(555^3\equiv5\left(mod10\right)\)
\(555^5=555^2\cdot555^3\equiv5\cdot5\equiv5\left(mod10\right)\)
\(\Rightarrow555^{777}\equiv5\left(mod10\right)\)
Suy ra :
\(333^{555^{777}}\) đồng dư với \(333^5\)
Do \(333^5=3332\cdot3333\equiv3\left(mod10\right)\)
Vậy chữ số tận cùng của \(333^{555^{777}}\) là 3 (1)
Tương tự : \(777^{555^{333}}\) có chữ số chữ số tận cùng là 7 (2)
Từ (1) ; (2) suy ra :
\(333^{555^{777}}\)\(+777^{555^{333}}\) có chữ số tận cùng là 0
Vậy \(333^{555^{777}+}777^{555^{333}}\) \(⋮10\)
555 ^ 2 ≡ 5 (mod 10)
555 ^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra
333^555^777đồng dư với 333^5
Do 333^5=333^2.333^3≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2) Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.
500 x10 + 555
= 5000 + 555
= 5555
500*10+5=5555