K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

có \(x^2-2y=4^2-2\cdot8=16-16=\)0

do đó C=0

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Lời giải:

\(x=4; y=8\Rightarrow x^2=16; 2y=16\Rightarrow x^2=2y\Rightarrow x^2-2y=0\).

Do đó:

\(A=(x^2-2y).\frac{x^2(x^2+2y)(x^4+2y^4)(x^8+2y^8)}{x^{16}+2y^{16}}\)

\(=0.\frac{x^2(x^2+2y)(x^4+2y^4)(x^8+2y^8)}{x^{16}+2y^{16}}=0\)

30 tháng 12 2015

Bài này thắng làm  rồi 

NV
1 tháng 9 2020

\(Q\ge\sqrt{\frac{x^{10}y^{10}}{x^2y^2}}+\frac{1}{2}\sqrt{x^{16}y^{16}}-\left(x^2y^2+1\right)^2\)

\(Q\ge\frac{1}{2}\left(xy\right)^8+\left(xy\right)^4-\left(x^2y^2+1\right)^2\)

Đặt \(x^2y^2=a\ge0\Rightarrow Q\ge\frac{1}{2}a^4+a^2-\left(a+1\right)^2\)

\(Q\ge\frac{1}{2}a^4-2a-1=\frac{1}{2}a^4-2a+\frac{3}{2}-\frac{5}{2}\)

\(Q\ge\frac{1}{2}\left(a-1\right)^2\left(a^2+2a+3\right)-\frac{5}{2}\ge-\frac{5}{2}\)

\(Q_{min}=-\frac{5}{2}\) khi \(a=1\) hay \(x^2=y^2=1\)