K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

Đặt \(C=B-\frac{1}{2}=\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2012}\)

\(\Rightarrow\frac{3}{2}\cdot C=\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+...+\left(\frac{3}{2}\right)^{2013}\)

\(\Rightarrow\frac{3}{2}C-C=\frac{1}{2}C=\frac{3}{2}+\left(\frac{3}{2}\right)^{2013}\)

\(\Rightarrow C=3+\left(\frac{3}{2}\right)^{2013}\cdot2\)

\(\Rightarrow B=\frac{1}{2}+3+\left(\frac{3}{2}\right)^{2013}\cdot2\)

do đó \(A-B=\left(\frac{3}{2}\right)^{2014}+\frac{7}{2}\)

13 tháng 4 2018

bn tham khảo link này nha :https://olm.vn/hoi-dap/question/67497.html 

6 tháng 3 2020

kelly gamming 

bạn tham khảo link này nhé 

https://olm.vn/hoi-dap/detail/245557083163.html

bạn chịu khó ghi ra nha

link này mik làm là B-A

đoạn cuối bạn lấy A-B là được

13 tháng 5 2017

\(A=\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2012}\)(1)

\(\frac{3}{2}A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+...+\left(\frac{3}{2}\right)^{2013}\)(2)

Lấy (2) trừ (1) ta được:

\(\frac{1}{2}A=\frac{3}{4}+\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}-\frac{3}{2}=\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}\)

\(A=\frac{\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}}{\frac{1}{2}}=\left(\frac{3}{2}\right)^{2013}.2-\frac{5}{4}.2=\left(\frac{3}{2}\right)^{2013}.2-\frac{5}{2}\)

\(\Rightarrow B-A=\left(\frac{3}{2}\right)^{2013}\cdot\frac{1}{2}-\left(\frac{3}{2}\right)^{2013}.2+\frac{5}{2}=-\left(\frac{3}{2}\right)^{2014}+\frac{5}{2}\)

17 tháng 4 2018

kết quả là (3/2)^2014-1

đúng đó

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(\begin{array}{l}{\left( {\frac{{ - 1}}{2}} \right)^5} = \frac{{{{\left( { - 1} \right)}^5}}}{{{2^5}}} = \frac{{ - 1}}{{32}};\\{\left( {\frac{{ - 2}}{3}} \right)^4} = \frac{{{{\left( { - 2} \right)}^4}}}{{{3^4}}} = \frac{{16}}{{81}};\\{\left( { - 2\frac{1}{4}} \right)^3} = {\left( {\frac{{ - 9}}{4}} \right)^3} = \frac{{{{\left( { - 9} \right)}^3}}}{{{4^3}}} = \frac{{-729}}{{64}};\\{\left( { - 0,3} \right)^5} = {\left( {\frac{{ - 3}}{{10}}} \right)^5} = \frac{{ - 243}}{{100000}};\\{\left( { - 25,7} \right)^0} = 1\end{array}\)

b)

\(\begin{array}{l}{\left( { - \frac{1}{3}} \right)^2} = \frac{1}{9};\\{\left( { - \frac{1}{3}} \right)^3} = \frac{{ - 1}}{{27}};\\{\left( { - \frac{1}{3}} \right)^4} = \frac{1}{{81}};\\{\left( { - \frac{1}{3}} \right)^5} = \frac{{ - 1}}{{243}}.\end{array}\)

Nhận xét:

+ Luỹ thừa của một số hữu tỉ âm với số mũ chẵn là một số hữu tỉ dương.

+  Luỹ thừa của một số hữu tỉ âm với số mũ lẻ là một số hữu tỉ âm.

7 tháng 4 2020

theo công thức \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

=>\(A=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+...+\frac{1}{2013}.\frac{2013.2014}{2}\)

\(=>A=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{2014}{2}=>A=\frac{1}{2}\left(1+2+3+..+2014\right)-\frac{1}{2}\)

\(=>A=\frac{1}{2}.\frac{2014.2015}{2}-\frac{1}{2}=1014552\)

18 tháng 6 2018

Ta có \(A=\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\)

\(\Rightarrow\frac{3}{2}A=\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+....\left(\frac{3}{2}\right)^{2013}\)

\(\Rightarrow\frac{3}{2}A-A=\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}\)hay \(\frac{1}{2}A=\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}\)

Suy ra \(A=2.\text{[}\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}\text{]}\)

Khi đó \(B-A=\frac{\left(\frac{3}{2}\right)^{2013}}{2}-2.\text{[}\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}\text{]}\)

18 tháng 6 2018

\(A=\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\)

\(\frac{3}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}\)

\(\Rightarrow\frac{3}{2}.A-A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}-\left[\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\right]\)

\(\Rightarrow\frac{1}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}-\frac{3}{2}=\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}\)

\(\Rightarrow A=2.\left(\frac{3}{2}\right)^{2013}-\frac{5}{2}\)

\(B-A=\frac{1}{2}.\left(\frac{3}{2}\right)^{2013}-2.\left(\frac{3}{2}\right)^{2013}+\frac{5}{2}=-\left(\frac{3}{2}\right)^{2014}+\frac{5}{2}\)

AH
Akai Haruma
Giáo viên
24 tháng 8

Lời giải:

** Sửa đề:

$A=\frac{1}{2}(1+2)+\frac{1}{3}(1+2+3)+\frac{1}{4}(1+2+3+4)+....+\frac{1}{2013}(1+2+3+...+2013)$

$A=\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+....+\frac{1}{2013}.\frac{2013.2014}{2}$

$=\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+....+\frac{2014}{2}$

$=\frac{3+4+5+...+2014}{2}$

$=\frac{1+2+3+4+5+...+2014}{2}-\frac{3}{2}$
$=\frac{2014.2015:2}{2}-\frac{3}{2}$

$=1014551$