Cho biểu thức
\(\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right)\cdot\frac{x-1}{2x+\sqrt{x}-1}\)
A Rút gọn B
B Tìm x để B<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(1P=\left(\frac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\frac{x\sqrt{x}-1}{\sqrt{x}+1}-\sqrt{x}\right)\)
\(=\frac{1}{\sqrt{x}-1}.\frac{x\sqrt{X}-x-\sqrt{x}-1}{\sqrt{x}+1}\)
\(=1\frac{x\sqrt{x}-x-\sqrt{x}-1}{x-1}\)
Ta có thao câu b thì 1 - x > 0
<=> x < 1
=> \(0\le x< 1\)
Ta có \(P\sqrt{1-x}=\frac{x\sqrt{x}-x-\sqrt{x}-1}{-\sqrt{1-x}}< 0\)
\(\Leftrightarrow x\sqrt{x}-x-\sqrt{x}-1>0\)
Ta thấy \(0\le x< 1\Rightarrow x\sqrt{x}< x+\sqrt{x}+1\)
Vậy không có giá trị nào của x để cái trên xảy ra
ĐKXĐ: Bạn tự làm nha
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+1\)
\(=\frac{x^2-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\frac{x^2+x+1}{x+\sqrt{x}+1}\)
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)
\(=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{1\left(\sqrt{a}-1\right)-2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-1-2}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(a-1\right)}{\sqrt{a}\left(\sqrt{a}-3\right)}\)
\(a)\)\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x-3}}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\frac{3\sqrt{x}+3}{\sqrt{x}+3}.\frac{\sqrt{x}-3}{\sqrt{x+1}}\)
\(R=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
\(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
\(b)\) Ta có : \(R< -1\)
\(\Leftrightarrow\)\(\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}< -1\)
\(\Leftrightarrow\)\(\frac{\sqrt{x}-3}{\sqrt{x}+3}< \frac{-1}{3}\)
\(\Leftrightarrow\)\(3\sqrt{x}-9< -\sqrt{x}-3\)
\(\Leftrightarrow\)\(4\sqrt{x}< 6\)
\(\Leftrightarrow\)\(\sqrt{x}< \frac{3}{2}\)
\(\Leftrightarrow\)\(x< \frac{9}{4}\)
Chúc bạn học tốt ~
ĐKXĐ:\(x\ge0,x\ne1,x\ne\frac{1}{2}\)
a) \(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}=\left[\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+3}{\sqrt{x}-1}\right].\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}+3}{\sqrt{x}-1}\right).\frac{\sqrt{x}-1}{2\sqrt{x}-1}=\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)
b) Ta có \(B< 0\Leftrightarrow\frac{2\sqrt{x}+3}{2\sqrt{x}-1}< 0\)(1)
Vì \(2\sqrt{x}+3>0\)
(1)\(\Leftrightarrow2\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< \frac{1}{2}\Leftrightarrow x< \frac{1}{4}\)
Kết hợp với ĐK, vậy \(0\le x< \frac{1}{4}\) thì B<0