cho đa thức f(x)= \(ax^2\)+bx+c chứng tỏ rằng f(-2).f(3)\(\le\)0 nếu 13a+b+2c=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : f(-2) = 4a - 2b + c
f(3) = 9a + 3b + c
Lại có f(-2) + f(3) = 4a - 2b + c + 9a + 3b + c = 13a + b + 2c = 0(Vì 13a + b + 2c = 0)
=> f(-2) = - f(3)
=> [f(-2)]2 = -f(3).f(-2)
mà [f(-2)]2 \(\ge0\)
=> -f(3).f(-2) \(\ge0\)
=> f(-2).f(3) \(\le\)0
bạn hay tinh f(-2) và f(-3)
rồi nhân vào chia nhóm ra lam sao xuat hien 13a + b +2c
rồi thay no bằng 0 vào mà giải
13a+b+2c=0
=>b=-13a-2c
f(-2)=4a-2b+c=4a+c+26a+4c=30a+5c
f(3)=9a+3b+c=9a+c-39a-6c=-30a-5c
=>f(-2)*f(3)<=0
Cho đa thức f(x) = ax2 + bx + c và 13a + b + 2c = 0 .Chứng tỏ rằng f(-2) và f(3) là hai số đối nhau.
\(f\left(-2\right)=a\cdot\left(-2\right)^2+b\cdot\left(-2\right)+c=4a-2b+c\)
\(f\left(3\right)=a\cdot3^2+b\cdot3+c=9a+3b+c\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)
=> đpcm
\(F\left(-2\right)=4a-2b+c\)
\(F\left(3\right)=9a+3b+c\)
\(F\left(-2\right)+F\left(3\right)=13a+b+2c=0\)
\(F\left(-2\right)=0-F\left(3\right)=-F\left(3\right)\)
Vậy ...
Ta có:
f(−2)+f(3)=((−2)2a−2b+c)+(32a+3b+c)=(4a−2b+c)+(9a+3b+c)=13a+b+2c=0f(−2)+f(3)=((−2)2a−2b+c)+(32a+3b+c)=(4a−2b+c)+(9a+3b+c)=13a+b+2c=0
Suy ra⎡⎢ ⎢ ⎢ ⎢⎣{f(−2)>0f(3)<0{f(−2)<0f(3)>0⇒f(−2).f(3)<0
vậy......
\(13a+b+2c=0\Rightarrow b=-13a-2c\)
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(-2\right).f\left(3\right)=\left(4a-2b+c\right)\left(9a+3b+c\right)\)
\(=\left(4a-2\left(-13a-2c\right)+c\right)\left(9a+3\left(-13a-2c\right)+c\right)\)
\(=\left(4a+26a+4c+c\right)\left(9a-39a-6c+c\right)\)
\(=\left(30a+5c\right)\left(-30a-5c\right)\)
\(=-\left(30a+5c\right)^2\le0\)
-Dấu "=" xảy ra khi \(a=-b=-\dfrac{1}{6}c\)
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\)
\(=4a-2b+c\)
\(\Rightarrow f\left(3\right)=a.3^2+b.3+c\)
\(=9a+3b+c\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)
\(=13a+b+2c=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)
\(\Rightarrow f\left(-2\right).f\left(3\right)\le0\)