K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

câu này mik vừa làm sáng ngày ne

ta đặt \(\sqrt{x^2-2014}=a;\sqrt{y^2-2014}=b;\sqrt{z^2-2014}=c\)

ta có \(ab+bc+ca=2014\Rightarrow ab+bc+ca+a^2=x^2-2014+2014=x^2\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)=x^2\)

tương tự ta có \(\left(b+c\right)\left(b+a\right)=y^2;\left(c+a\right)\left(c+b\right)=z^2\)

nhân cả 3 vào ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=xyz\)

=> \(\hept{\begin{cases}\left(a+b\right)z^2=xyz\\\left(b+c\right)x^2=xyz\\\left(c+a\right)y^2=xyz\end{cases}\Rightarrow\hept{\begin{cases}a+b=\frac{xy}{z}\\b+c=\frac{yz}{x}\\c+a=\frac{zx}{y}\end{cases}}}\)

cậu nhân tung A ra rồi thay \(\frac{xy}{z};\frac{yz}{x};\frac{zx}{y}\) như vừa tính vào thì cậu sẽ ra kết quả là A=4028

23 tháng 10 2017

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2014}=a\left(a\ge0\right)\\\sqrt{y^2-2014}=b\left(b\ge0\right)\\\sqrt{z^2-2014}=c\left(c\ge0\right)\end{matrix}\right.\)

\(\Rightarrow ab+bc+ca=2014\)

Ta có: \(\sqrt{x^2-2014}=a\)

\(\Leftrightarrow x^2-2014=a^2\)

\(\Rightarrow x^2=a^2+2014=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

Tương tự, ta có:

\(y^2=\left(b+c\right)\left(b+a\right)\)

\(z^2=\left(c+a\right)\left(c+b\right)\)

Xét \(A=xyz\left(\dfrac{\sqrt{x^2-2014}}{x^2}+\dfrac{\sqrt{y^2-2014}}{y^2}+\dfrac{\sqrt{z^2-2014}}{z^2}\right)\)

\(=\sqrt{\left(a+b\right)\left(a+c\right)}\times\sqrt{\left(b+c\right)\left(b+c\right)}\times\sqrt{\left(c+a\right)\left(c+b\right)}\)

\(\times\left[\dfrac{a}{\left(a+b\right)\left(a+c\right)}+\dfrac{b}{\left(b+c\right)\left(b+a\right)}+\dfrac{c}{\left(c+a\right)\left(c+b\right)}\right]\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\times\dfrac{a\left(b+c\right)\times b\left(c+a\right)\times c\left(b+a\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(=2\left(ab+bc+ac\right)=4028\)

23 tháng 10 2017

Châu

ù má =__= dấu bằng thứ hai dưới đếm lên sai ròi :"v cái phân số là

\(\dfrac{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

ms đúng TT.TT nhưng kết quả vẫn dzậy thoy ^.^

23 tháng 10 2017

đk của x,y,z là x,y,z\(\ge\sqrt{2014}\) nhé, xin lỗi chép sót đề bucminh

23 tháng 8 2018

Ta có \(\left(x+y+z\right)^2-x^2-y^2-z^2=a^2-b\Rightarrow2\left(xy+yz+zx\right)=2048\Rightarrow xy+yz+zx=2014\)

với xy+yz+zx=2014, thay vào, ta có A=\(\sum x\sqrt{\dfrac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}=\sum x\sqrt{\dfrac{\left(y+z\right)^2\left(y+x\right)\left(z+x\right)}{\left(x+z\right)\left(x+y\right)}}=\sum x\left(y+z\right)=2\left(xy+yz+zx\right)=2048\)

7 tháng 10 2019

\(\left(\sqrt{x^2+2014}-x\right)\left(x+\sqrt{x^2+2014}\right)\left(y+\sqrt{y^2+2014}\right)\)

7 tháng 10 2019

nhân lên

1) x+ căn x^2+2014=2014/ y- căn y^2+2014= 2014(y+căn  y^2+ 2014)/-2014=-y-(căn y^2+2014)

tương tự , đuwa bên x+ căn... qua=> 1 pt y+ căn//..... =??

sau đó kết hợp 2 cái này là ra

24 tháng 10 2019

Ta có: \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)

\(\Leftrightarrow\left(x-\sqrt{x^2+2013}\right)\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow-y-\sqrt{y^2+2013}=x-\sqrt{x^2+2013}\)

\(x+y=\sqrt{x^2+2013}-\sqrt{y^2+2013}\)(1)

Nhân liên hợp tương tự nhân \(y-\sqrt{y^2+2013}\)vào hai về rút được

\(x+y=\sqrt{y^2+2013}-\sqrt{x^2+2013}\)(2)

Cộng vế theo vế (1)(2) ta được \(x+y=0\Rightarrow x=-y\)

Thay vào \(A=\left(-y\right)^{2014}-y^{2014}+1=1\)

8 tháng 10 2017

Bài 2 : đã cm bên kia

Bài 1: :| 

we had điều này:

\(2=\frac{2014}{x}+\frac{2014}{y}+\frac{2014}{z}\)

\(\Leftrightarrow\frac{x-2014}{x}+\frac{y-2014}{y}+\frac{z-204}{z}=1\)

Xòng! bunyakovsky

P/s : Bệnh lười kinh niên tái phát nên ít khi ol sorry :<

8 tháng 10 2017

Lời Giải

Cộng theo vế 2 pt trên, ta có

3(x+1)2+2(x−1)2=83(x+1)2+2(x−1)2=8

⇔5x2+2x−3=0⇔5x2+2x−3=0

⇔⎡⎣x=35x=−1⇔[x=35x=−1

Ta viết lại pt (2)

x+5(y−1)=xyx+5(y−1)=xy

⇔(x−xy)+5(y−1)=0⇔(x−xy)+5(y−1)=0

⇔x(1−y)−5(1−y)=0⇔x(1−y)−5(1−y)=0

⇔(x−5)(1−y)=0⇔(x−5)(1−y)=0

⇔[x=5y=1⇔[x=5y=1

- TH1: Thay x = 5 vào pt (1) tìm được [y=−5+52−√y=−5−52−√[y=−5+52y=−5−52

- TH2: Thay y = 1 vào pt (1) tìm được [x=−1+52−√x=−1−52−√[x=−1+52x=−1−52

6 tháng 10 2017

Áp dụng BĐT vào giải pt 2 dựa vào đk x,y>0; x+y=căn bậc 3 2014 

suy ra dấu =