Giải bpt
X2 +x-6>0
X2+7+12<=0
(X -2) (x +6) (2x +5)<=0
(1-x) (x2 -- 6)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ mà,e cứ chia 2 TH là đc
Vd:<0 thì chia ra x+2>0 hoac x<0 và nguoc lai roi tìm x
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)
\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)
2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)
\(\Rightarrow\frac{3}{2}< x< 2\)
3. \(\Leftrightarrow\left(5x-3\right)^2>0\)
\(\Rightarrow x\ne\frac{3}{5}\)
4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)
\(\Rightarrow x\in R\)
5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)
\(\Rightarrow x\in R\)
6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)
\(\Rightarrow-2\le x\le-\frac{7}{8}\)
7.
\(\Leftrightarrow\left(x-1\right)^2+2>0\)
\(\Rightarrow x\in R\)
8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)
9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)
\(\Rightarrow-6< x< -3\)
10. \(\Leftrightarrow x^2-6x+9>0\)
\(\Leftrightarrow\left(x-3\right)^2>0\)
\(\Rightarrow x\ne3\)
\(1.x^2+x-6>0\)
\(\Leftrightarrow x^2-x+6x-6>0\)
\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)>0\)
TH1:\(\hept{\begin{cases}x-1>0\\x+6>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x>-6\end{cases}}\Leftrightarrow x>1}\)
TH2:\(\hept{\begin{cases}x-1< 0\\x+6< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -6\end{cases}\Leftrightarrow}x< -6}\)
\(2.x^2+7x+12\le0\)
\(\Leftrightarrow x^2+3x+4x+12\le0\)
\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\le0\)
TH1:\(\hept{\begin{cases}x+3\ge0\\x+4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\le-4\end{cases}\left(l\right)}}\)
TH2:\(\hept{\begin{cases}x+3\le0\\x+4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-3\\x\ge-4\end{cases}\Leftrightarrow}-4\le x\le-3\left(n\right)}\)
\(3.\) \(\left(x-2\right)\left(x+6\right)\left(2x+5\right)\le0\)
TH1:\(\hept{\begin{cases}x-2\ge0\\x+6\ge0\\2x+5\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\ge-6\\x\le-\frac{5}{2}\end{cases}}}\left(l\right)\)
TH2:(loại)
TH3:\(\hept{\begin{cases}x-2\le0\\x+6\ge0\\2x+5\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge-6\\x\ge-\frac{5}{2}\end{cases}\Leftrightarrow}-\frac{5}{2}\le x\le2}\)
Và còn nhiều TH khác nữa tự tìm nhé
\(4.\) \(\left(1-x\right)\left(x^2-6\right)>0\)
TH1:\(\hept{\begin{cases}1-x>0\\x^2-6>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x>\sqrt{6}\end{cases}\left(l\right)}}\)
TH2:\(\hept{\begin{cases}1-x< 0\\x^2-6< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x< \sqrt{6}\end{cases}\Leftrightarrow}1< x< \sqrt{6}\left(n\right)}\)