K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử  0≤a1<a2<...<a1010≤2015  là 1010 số tự nhiên được chọn .

Xét 1009 số : bi=a1010−ai(i=1,2,...,1009)

=>  0<b1009<b1008<...<b1≤2015

Theo nguyên lý Dirichlet trong 2019 số  ai,bi không vượt quá 2015 luôn tồn tại 2 số bằng nhau, mà các số  ai,bi  không thể bằng nhau

=>  Tồn tại i , j  sao cho  :  aj=bi

=>  aj=a1010−ai=>a1010=ai+aj     ( đpcm ) .

11 tháng 5 2019

Dirchle bạn mik nói là đi dép lê =))

27 tháng 8 2015

Đã bảo là gửi Link qua tin nhắn cho tôi tối tôi làm cho ( nếu dảnh) còn ko thì để đến hôm khác

14 tháng 1 2017

ffffffffffffffffffffffffffffffff

3 tháng 2 2019

giải sử 69 số đã cho là 1 < a1 < a2 < ..... < a69 < 100. Khi đó a1 < 32. xét hai dãy sau :

1 < a1 + a3 < a1 + a4 < ....< a1 + a69 < 132 ( 1 )

< a3 - a2 < a4 - a2 < ....< a69 - a2 < 132 ( 1 )

từ ( 1 ) và ( 2 ) ta có 134 số hạng có giá trị từ 1 đến 132, => có 2 số bằng nhau mỗi số thuộc một dãy, chẳng hạn: a1 + am = an - a2 ( với 3 < m < n < 69 ), tức là ta tìm được 4 số a1, a2, an , am với a1 < a2 < am mà a1 + a2 + am = an ( đpcm )

28 tháng 6 2021

undefined

bạn chép đúng k

19 tháng 11 2021

k biết nx