Cho x/x2-x+1=a . Tính M=x2/x4+x2+1 theo a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2}{x^4+x^2+1}=\left(\frac{x}{x^2+x+1}\right)^2\)=a2
+ \(x=0\) \(\Rightarrow a=0,M=0\)
+ \(x\ne0\)\(\Rightarrow a\ne0\)
\(M=\frac{x^2}{x^4+x^2+1}=\frac{x}{x^2-x+1}.\frac{x}{x^2+x+1}\left(1\right)\)
\(\Leftrightarrow\frac{x^2+x+1}{x}=\frac{x^2-x-1}{x}+\frac{2x}{x}=\frac{1}{a}+2=\frac{1+2a}{a}\)(2)
(1)(2) \(\Rightarrow M=a.\frac{a}{1+2a}=\frac{a^2}{1+2a}\)
đề bài tính "A" :
\(\left\{{}\begin{matrix}\dfrac{x}{x^2-x+1}=a\\A=\dfrac{x^2}{x^4+x^2+1}\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\\\left(2\right)\end{matrix}\)
\(x=0;a=0;A=0\)
\(x\ne0;\left(1\right)\Leftrightarrow\dfrac{1}{a}=\dfrac{x^2-x+1}{x}=x+\dfrac{1}{x}-1\)
\(\left(2\right)\Leftrightarrow\dfrac{1}{A}=\dfrac{x^4+x^2+1}{x^2}=x^2+\dfrac{1}{x^2}+1=\left(x+\dfrac{1}{x}\right)^2-1=\left(x+\dfrac{1}{x}-1\right)\left(x+\dfrac{1}{x}+1\right)\)
\(\dfrac{1}{A}=\dfrac{1}{a}\left(\dfrac{1}{a}+2\right)=\dfrac{2a+1}{a^2}\)
\(a=\dfrac{-1}{2}\Leftrightarrow\left(x^2+x+1\right)=0;voN_0\)
a khác -1/2 mọi x
\(A=\dfrac{a^2}{2a+1}\)
Từ \(x=\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c=\frac{1}{2}.\left(a+b+c\right)\Rightarrow2x=a+b+c\)
\(M=\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)+x^2\)
\(=x^2-xb-ax+ab+x^2-xc-bx+bc+x^2-ax-cx+ac+x^2\)
\(=4x^2-2ax-2bx-2cx+ab+bc+ac\)
\(=4x^2-2x\left(a+b+c\right)+ab+bc+ca\)
Thay 2x=a+b+c,ta đc:
\(M=4x^2-2x.2x+ab+bc+ca=4x^2-4x^2+ab+bc+ca=ab+bc+ca\)
dùng cách nhân một lượng liên hiệp vào phần bt đã cho, sau đó quy đổi ra đơn vị gần giống bt sau ( có mũ 4) nhé
ví dụ chẳng hạn : \(\frac{a-b}{a+b}=\frac{\left(a-b\right)\left(a+b\right)}{\left(a+b\right)^2}=\frac{a^2+b^2}{\left(a+b\right)^2}\)
\(A=a^4+2a^3+5a^2+4a+4\\ A=\left(a^4+a^3+a^2\right)+\left(a^3+a^2+a\right)+\left(3a^2+3a+3\right)+1\\ A=a^2\left(a^2+a+1\right)+a\left(a^2+a+1\right)+3\left(a^2+a+1\right)+1\\ A=\left(a^2+a+3\right)\left(a^2+a+1\right)+1\\ A=x\left(x+2\right)+1=x^2+2x+1=\left(x+1\right)^2\)
a)\(f\left(x\right)=x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-\frac{1}{4}x+2x-3\)
\(=x^5-x^5+7x^4-9x^3-3x^2+2x^2+x^2-\frac{1}{4}x+2x-3\)
\(=7x^4-9x^3+\frac{7}{4}x-3\)
\(g\left(x\right)=5x^4-x^5+\frac{1}{2}x^2+x^5+x^2-4x^4-2x^3+3x^2+x^3-\frac{1}{4}\)
\(=-x^5+x^5+5x^4-4x^4-2x^3+x^3+\frac{1}{2}x^2+x^2+3x^2-\frac{1}{4}\)
\(=x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}\)
b)\(f\left(1\right)=7.1^4-9.1^3+\frac{7}{4}.1-3=7-9+\frac{7}{4}-3=-\frac{13}{4}\)
\(f\left(-1\right)=7.\left(-1\right)^4-9.\left(-1\right)^3+\frac{7}{4}.\left(-1\right)-3=7+9-\frac{7}{4}-3=\frac{45}{4}\)
\(g\left(1\right)=1^4-1^3+\frac{9}{2}.1^2-\frac{1}{4}=1-1+\frac{9}{2}-\frac{1}{4}=\frac{17}{4}\)
\(g\left(-1\right)=\left(-1\right)^4-\left(-1\right)^3+\frac{9}{2}.\left(-1\right)^2-\frac{1}{4}=1+1+\frac{9}{2}-\frac{1}{4}=\frac{25}{4}\)
c) Ta có: f(x)+g(x)=\(7x^4-9x^3+\frac{7}{4}x-3+x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}=7x^4+x^4-9x^3-x^3+\frac{9}{2}x^2+\frac{7}{4}x-3-\frac{1}{4}\)
\(=8x^4-10x^3+\frac{9}{2}x^2+\frac{7}{4}x-\frac{13}{4}\)
f(x)-g(x) =\(7x^4-9x^3+\frac{7}{4}x-3-x^4+x^3-\frac{9}{2}x^2+\frac{1}{4}=7x^4-x^4-9x^3+x^3-\frac{9}{2}x^2+\frac{7}{4}x-3+\frac{1}{4}\)
\(=6x^4-8x^3-\frac{9}{2}x^2+\frac{7}{4}x-\frac{11}{4}\)