K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

Ta có : 5n + 8 : 3 - 2n

            3 - 2n :  3 - 2n

=> 2.(5n + 8 ) : 3 - 2n

     5.(3 - 2n ) : 3 - 2n 

=> 10n + 16 : 3 - 2n (1)

     15 - 10n : 3 - 2n (2)

Từ (1) và (2) => (10n + 16) - (15 - 10n) : 3 - 2n

                      => 10n + 16 - 15 + 10n : 3 - 2n

                      => 1 : 3 - 2n

Ta có bảng sau :

3 - 2n-11
n12
nhận xétChọnchọn 
6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

26 tháng 10 2019

6 tháng 6 2021

Sao bn giỏi zậy 😂

24 tháng 4 2016

\(A=\frac{5n-9}{2n-5}=\frac{6n-15-n+6}{2n-5}=\frac{3\left(2n-5\right)-n+6}{2n-5}=3-\frac{n-6}{2n-5}\)

Để A nhận gt nguyên thì n-6 chia hết cho 2n-5 hay 6 chia hết cho n-5 => n-5 thuộc Ư(6)={1;-1;2;-2;3;-3;6;-6}
=> n = {6;4;7;3;8;2;11;-1}

23 tháng 10 2019

Với n thuộc Z

Có: \(A=2n^2+5n-3=2n^2+6n-n-3=2n\left(n+3\right)-\left(n+3\right)=\left(2n-1\right)\left(n+3\right)\)

=> \(\left|A\right|=\left|\left(n+3\right)\left(2n-1\right)\right|\)

Để | A | là số nguyên tố \(n+3=\pm1\)hoặc \(2n-1=\pm1\)

+) Với n + 3 = 1 => n =-2  => | A | = 5 là số nguyên tố => n = - 2 thỏa mãn.

+) Với n + 3 = - 1 => n = - 4 => | A | = 9 không là số nguyên tố => loại

+) Với 2n -1 = 1 => n =1 => |A | = 4 loại

+) Với 2n -1 =-1 => n = 0 => | A | = 3 là số nguyên tố => n = 0 thỏa mãn.

Vậy n=-2 hoặc n =0.

25 tháng 3 2018

\(C=\frac{x^2-1}{x+1}\inℤ\Leftrightarrow x^2-1⋮x+1\)

\(\Rightarrow x\cdot x+x-x-1⋮x+1\)

\(\Rightarrow x\left(x+1\right)-x-1⋮x+1\)

     \(x\left(x+1\right)⋮x+1\)

\(\Rightarrow x-1⋮x+1\)

\(\Rightarrow x+1-2⋮x+1\)

     \(x+1⋮x+1\)

\(\Rightarrow2⋮x+1\)

\(\Rightarrow x+1\inƯ\left(2\right)\)

      \(x\inℤ\Rightarrow x+1\inℤ\)

\(\Rightarrow x+1\in\left\{-1;1;-2;2\right\}\)

\(\Rightarrow x\in\left\{-2;0;-3;1\right\}\)

10 tháng 8 2017

a, (5n+2)9 = (2n+7)7

  45n+18=14n+49

  31n=31

  n=1

28 tháng 3 2018

a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)

\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)

\(\Leftrightarrow45n+18=14n+49\)

\(\Leftrightarrow31n=31\)

\(\Leftrightarrow n=1\)

n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)

Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.

\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)

Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

Ta có bảng:

2n + 71-131-31
n-3-412-19
KLTMTMTMTM

 

Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)

c

24 tháng 5 2019

\(\frac{15}{n}\)nhận giá trị nguyên <=>n thuộc Ư(15)

                                       <=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}

     Vậy \(\frac{15}{n}\)đạt giá trị nguyên <=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}

24 tháng 5 2019

Để 3 phân số trên nhận giá trị nguyên thì
n\(\in\)Ư(15)=>n={\(\pm\)1;\(\pm\)3;\(\pm\)5;\(\pm\)15}

n+2\(\in\)Ư(12)

2n-5\(\in\)Ư(6)

=>n=\(\pm\)1;\(\pm\)3,...

9 tháng 7 2019

\(A=\frac{6-3n}{n}=\frac{6}{n}-3\)

\(\Rightarrow A\in Z\Leftrightarrow\frac{6}{n}\in Z\Rightarrow n\inƯ_6\)

\(\Rightarrow...\)

\(B=\frac{7+14n}{2n}=\frac{7}{2n}+7\)

\(B\in Z\Leftrightarrow\frac{7}{2n}\in Z\Rightarrow2n\inƯ_7\)

\(\Rightarrow...\)

\(c,\frac{3-21n}{3n}=\frac{3}{3n}-7=\frac{1}{n}-7\)

\(C\in Z\Leftrightarrow\frac{1}{n}\in Z\Leftrightarrow n\in\left\{\pm1\right\}\)