Cho đường tròn (C): \(\left(x-2\right)^2+\left(y+3\right)^2=9\) và A (1; -2). Đường thẳng qua A cắt (C) tại M, N. Tìm giá trị nhỏ nhất của MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay tọa độ điểm \(M\left( {4; - 2} \right)\) vào phương trình đường tròn ta được: \({\left( {4 - 1} \right)^2} + {\left( { - 2 - 2} \right)^2} = {3^2} + {4^2} = 25\). Vậy điểm M thỏa mãn phương trình đường tròn \(\left( C \right)\).
b) Đường tròn \(\left( C \right)\) có tâm \(I\left( {1;2} \right)\) và \(R = 5\).
c) Ta có: \(\overrightarrow {{n_\Delta }} = \overrightarrow {IM} = \left( {3; - 4} \right)\). Vậy phương trình tiếp tuyến \(\Delta \) của đường tròn \(\left( C \right)\) là:
\(3\left( {x - 4} \right) - 4\left( {y + 2} \right) = 0 \Leftrightarrow 3x - 4y - 20 = 0\)
a: MN lớn nhất
=>MN là đường kính
=>Δ: y=ax+b đi qua A(3;0) và I(-1;2)
Ta có hệ pt:
3a+b=0 và -a+b=2
=>a=-1/2 và b=1/2
b: Kẻ IH vuông góc MN
MN nhỏ nhất khi H trùng với A
=>vecto IA=(4;-2)
Δ có phương trình là:
4(x-3)+(-2)(y-0)=0
=>4x-12-2y=0
I(x,y) có tung độ dương nên y>0 và thuộc (d)
nên I(x;-3x-4)
y>0
=>-3x-4>0
=>-3x>4
=>x<-4/3
Theo đề, ta có: d(I;Ox)=d(I;Oy)=R
(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|
=>3x+4=x hoặc -3x-4=x
=>2x=-4 hoặc -4x=4
=>x=-2(nhận) hoặc x=-1(loại)
=>I(-2;2)
R=|2|=2
=>(C): (x+2)^2+(y-2)^2=4
=>B
I(x,y) có tung độ dương nên y>0 và thuộc (d)
nên I(x;-3x-4)
y>0
=>-3x-4>0
=>-3x>4
=>x<-4/3
Theo đề, ta có: d(I;Ox)=d(I;Oy)=R
(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|
=>3x+4=x hoặc -3x-4=x
=>2x=-4 hoặc -4x=4
=>x=-2(nhận) hoặc x=-1(loại)
=>I(-2;2)
R=|2|=2
=>(C): (x+2)^2+(y-2)^2=4
=>B
Gọi H là hình chiếu vuông góc của \(I\left(2;-3\right)\) lên MN \(\Rightarrow\) theo tính chất đường tròn H là trung điểm MN \(\Rightarrow HM=\frac{1}{2}MN\)
Áp dụng định lý Pitago:
\(HM=\sqrt{IM^2-IH^2}\Rightarrow MN=2\sqrt{IM^2-IH^2}=2\sqrt{R^2-IH^2}\)
\(\Rightarrow MN_{min}\) khi \(IH_{max}\)
Mặt khác do \(A\in MN\Rightarrow\Delta AIH\) vuông tại H \(\Rightarrow IH\le IA\)
\(\Rightarrow IH_{max}=IA\) khi \(H\) trùng \(A\)
\(IA=\sqrt{\left(-1\right)^2+\left(-1\right)^2}=\sqrt{2}\)
\(\Rightarrow MN_{max}=2\sqrt{R^2-IA^2}=2\sqrt{9-2}=2\sqrt{7}\)