cho dãy tỉ số ab+bc/a+b=bc+ca/b+c=ca+ab/c+a cmr a=b=c chỗ ab,bc,ca là số có 2 chữ số nhé ko phải nhân đâu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}\)
\(=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)
\(\Rightarrow\hept{\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)=> a = b = c (đpcm)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)
\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow\begin{cases}a=b\\b=c\\c=a\end{cases}\)
=> a = b = c (đpcm)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{ab+bc}{a+b}=\frac{bc+ca}{b+c}=\frac{ca+ab}{c+a}=\frac{ab+bc+bc+ca+ca+ab}{a+b+b+c+c+a}=\frac{2\left(ab+bc+ca\right)}{2\left(a+b+c\right)}=\frac{ab+bc+ca}{a+b+c}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta lại có
\(\frac{ab+bc+ca}{a+b+c}=\frac{ab}{a}+\frac{bc}{b}+\frac{ca}{c}=\frac{ab}{a}=\frac{bc}{b}=\frac{ca}{a}\)
Từ \(\frac{ab}{a}=\frac{bc}{b}=\frac{ca}{c}\Rightarrow\frac{b}{1}=\frac{c}{1}=\frac{a}{1}\Rightarrow b=c=a\)
vậy a=b=c (đpcm)
Ta có: 30 < ab + ba + ac < 289 (Ở đây mình không cần biết là các số có chữ số nào khác nhau hay không, mình chỉ cần lấy 10 x số số hạng và 99 x số số hạng là mình sẽ giới hạn được đáp án)
Do 30 < ab + ba + ac < 289 và tổng là các số nguyên tố nên ta có các tổng sau: 36; 49; 64; 81; 100; 121; 144; 169; 196; 289.
Ta xét tổng thì ta lại có: 10a + b + 10b + c + 10c + a = 11a + 11b + 11c = 11(a + b + c)
Suy ra tổng chia hết cho 11 => Tổng của chúng chỉ còn là 121
Bây giờ ta có ab + ba + ac = 121; a + b + c = 11 và các số ab, bc, ca là các số nguyên tố
Vậy có các kết quả đúng là 13 + 37 + 71 = 121 với a = 1; b = 3; c = 7
và 17 + 73 + 31 = 121 với a = 1; b = 7; c = 3
và các đáp án đảo ngược khác như a = 3; b = 1; c = 7 ;...
Bunhiacopxki:
\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)
\(\Rightarrow\dfrac{ab}{a^2+bc+ca}\le\dfrac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)
Tương tự: \(\dfrac{bc}{b^2+ca+ab}\le\dfrac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\)
\(\dfrac{ca}{c^2+ab+bc}\le\dfrac{ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
\(\Rightarrow VT\le\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\le\dfrac{a^2+c^2+c^2}{ab+bc+ca}\)
\(\Leftrightarrow ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)
Nhân phá và rút gọn 2 vế:
\(\Leftrightarrow a^3b+b^3c+c^3a\ge abc\left(a+b+c\right)\)
\(\Leftrightarrow\dfrac{a^3b+b^3c+c^3a}{abc}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge a+b+c\)
Đúng do: \(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Dấu "=" xảy ra khi \(a=b=c\)
Ta có:
\(\dfrac{\overline{abc}}{\overline{bc}}=\dfrac{\overline{bca}}{\overline{ca}}=\dfrac{\overline{cab}}{\overline{ab}}\)
\(\Rightarrow\dfrac{100a+\overline{bc}}{\overline{bc}}=\dfrac{100b+\overline{ca}}{\overline{ca}}=\dfrac{100c+\overline{ab}}{\overline{ab}}\)
\(\Rightarrow\dfrac{100a}{\overline{bc}}+1=\dfrac{100b}{\overline{ca}}+1=\dfrac{100a}{\overline{ab}}+1\)
\(\Rightarrow\dfrac{100a}{\overline{bc}}=\dfrac{100b}{\overline{ca}}=\dfrac{100c}{\overline{ab}}\)
\(\Rightarrow\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}\)
Đặt: \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}=k\)
\(\Rightarrow a=k\overline{bc};b=k\overline{ca};c=k\overline{ab}\)
Ta có: \(\dfrac{a+b+c}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{k\overline{bc}+k\overline{ca}+k\overline{ab}}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{k\left(\overline{bc}+\overline{ca}+\overline{ab}\right)}{\overline{bc}+\overline{ca}+\overline{ab}}=k\)
Nên: \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}=\dfrac{a+b+c}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{a+b+c}{10b+c+10c+a+10a+b}=\dfrac{a+b+c}{11\left(a+b+c\right)}=\dfrac{1}{11}\)
\(\Rightarrow k=\dfrac{1}{11}\)
Giá trị của biểu thức P là:
\(P=\dfrac{a}{\overline{bc}}+\dfrac{b}{\overline{ca}}+\dfrac{c}{\overline{ab}}=k+k+k=\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}=\dfrac{3}{11}\)
\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)