Bài 3 Một tam giác có chu vi là 84cm và 3 cạnh của nó tỉ lệ với 3 4 5 . Tính độ dài mỗi cạnh của tam giác đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài ba cạnh của tam giác đó lần lượt là a ; b ; c ( cm, a ; b ; c \(\in\)N*)
Giả sử a < b < c
Vì độ dài 3 cạnh của tam giác đó tỉ lệ với 3 ; 4 ; 5
=> \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng tích chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\)( Vì chu vi của tam giác đó là 36 và a ; b ; c là độ dài 3 cạnh của tam giác đó)
Khi đó a = 3.3 = 9 cm ; b = 3.4 = 12 cm ; c = 3.5 = 15 cm
Vậy......
Học tốt
#Dương
Gọi 3 cạnh của nó là a, b, c
Ta có:
a/3 = b/4 = c/5 và a + b + c = 36
Áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\)
Suy ra: a/3 = 3 => a = 3 . 3 = 9
b/4 = 3 => b = 4 . 3 = 12
c/5 = 3 => c = 5 . 3 =15
Vậy 3 cạnh đó lần lượt là: 9 ; 12 ; 15 (cm)
Gọi độ dài của 3 cạnh tam giác lần lượt là: a, b, c
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{84}{12}=7\)
Khi đó:
\(\dfrac{a}{3}=7\Rightarrow a=7.3=21\left(cm\right)\)
\(\dfrac{b}{4}=7\Rightarrow b=7.4=28\left(cm\right)\)
\(\dfrac{c}{5}=7\Rightarrow c=7.5=35\left(cm\right)\)
Gọi x (cm), y (cm), z (cm) lần lượt là độ dài ba cạnh của tam giác đó (x, y, z > 0)
Do chu vi của tam giác là 84 cm nên x + y + z = 84
Do ba cạnh tỉ lệ với 3; 4; 5 nên \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{84}{12}=7\)
\(\dfrac{x}{3}=7\Rightarrow x=7.3=21\left(cm\right)\)
\(\dfrac{y}{4}=7\Rightarrow y=7.4=28\left(cm\right)\)
\(\dfrac{z}{5}=7\Rightarrow z=7.5=35\left(cm\right)\)
Vậy độ dài ba cạnh của tam giác lần lượt là: 21 cm, 28 cm, 35 cm
Gọi x, y, z lần lượt là độ dài các cạnh của tam giác đó.
Theo đề ta có:
x/3 = y/4 = z/5 và x + y + z = 96
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/3 = y/4 = z/5 = x + y + z / 3 + 4 + 5 = 96/12 = 8
x/3 = 8 => x = 24
y/4 = 8 => y = 32
z/5 = 8 => z = 40
Vậy độ dài các cạnh của tam giác đó lần lượt là: 24, 32, 40 (cm)
Gọi 3 cạnh của tam giác lần lượt là \(a, b, c ( cm) (a,b,c > 0)\)
Theo đề bài 3 cạnh của tam giác tỉ lệ với 3, 4, 5 nên ta có tỉ số \(a : b : c = 3 : 4 : 5.\)
Và chu vi tam giác là 60cm nên ta có:\( a + b + c = 60.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\( \Rightarrow \dfrac{a}{3} = \dfrac{b}{4} = \dfrac{c}{5} = \dfrac{{a + b + c}}{{12}} = \dfrac{{60}}{{12}} = 5\)
\( \Rightarrow a = 3.5=15 ; b = 4.5=20 ; c = 5.5=25.\)
Vậy 3 cạnh của tam giác có độ dài là \(15cm, 20cm, 25cm.\)
Gọi độ dài 3 cạnh lần lượt là a,b,c (a,b,c>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{36}{12}=3\)
\(\dfrac{a}{3}=3\Rightarrow a=9\\ \dfrac{b}{4}=3\Rightarrow b=12\\ \dfrac{c}{5}=3\Rightarrow c=15\)
Vậy độ dài 3 cạnh tam giác lần lượt là 9, 12, 15 cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{36}{12}=3\)
Do đó: a=9; b=12; c=15
Gọi 3 cạnh tam giác là a,b,c(a,b,c>0)
Áp dụng tc dtsbn:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b+c}{4+5+6}=\dfrac{45}{15}=3\\ \Rightarrow\left\{{}\begin{matrix}a=12\\b=15\\c=18\end{matrix}\right.\)
Vậy ...
Gọi 3 canh của tam giác lần lượt là x.y.z(cm;x,y,z thuộc N*)
Vì các canh của tam giác tỉ lệ với 3;4;5 và chu vi là 60 nên:
\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{5}\)và x+y+z=60
Áp dụng tính chất của dãy tỉ số bằng nhau
Ta có:\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{5}\)=\(\frac{x+y+z}{3+4+5}\)=\(\frac{60}{12}\)=5
Nên:\(\frac{x}{3}\)=5 suy ra x=15
\(\frac{y}{4}\) =5 suy ra y=20
\(\frac{z}{5}\)=5 suy ra z=25
Vậy độ dài 3 cạnh của tam giác lần lượt là 15cm;20cm;25cm.
\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)
Vậy ...
\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)
Gọi độ dài ba cạnh của tam giác lần lượt là \(a,b,c\left(cm\right)\)(\(a,b,c>0\))
Độ dài ba cạnh tỉ lệ với \(3,4,5\)nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\).
Chu vi tam giác bằng \(84cm\)nên \(a+b+c=84\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{84}{12}=7\)
\(\Leftrightarrow\hept{\begin{cases}a=7.3=21\\b=7.4=28\\c=7.5=35\end{cases}}\)