K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2019

đây là hướng dẫn còn phần bạn tự giải:

a)áp dụng PITAGO và AC=40cm

b) Xét 2 tam giác BAI và BAK có:

C1:BA ( chung) ; Góc BAK=BAI=90độ; AI=AK(GT)

C2: vì tam giác BIK có BA là đường cao đồng thời là trung trực, trung tuyến nên tam giác BIK cân tại A

c) thì tt xét tam giác MBE và MBA bằng nhau theo trường hợp (c-g-c)

6 tháng 5 2019

Thank

a: Xét ΔBAE và ΔBDE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBAE=ΔBDE

b: Xét ΔBFC có

BH là đường cao

BH là đường phân giác
Do đó: ΔBFC cân tại B

=>BF=BC

c: Xét ΔBDF và ΔBAC có

BD=BA

\(\widehat{DBF}\) chung
BF=BC

Do đó: ΔBDF=ΔBAC

=>DF=AC

Ta có: AE+EC=AC

DE+EF=DF

mà AE=DE(ΔBAE=ΔBDE)

và AC=DF

nên EC=EF

Ta có: ΔBAE=ΔBDE

=>\(\widehat{BAE}=\widehat{BDE}\)

=>\(\widehat{BDE}=90^0\)

=>DE\(\perp\)BC

Xét ΔEAF vuông tại A và ΔEDC vuông tại E có

EA=ED

EF=EC

Do đó: ΔEAF=ΔEDC

=>\(\widehat{AEF}=\widehat{DEC}\)

mà \(\widehat{DEC}+\widehat{DEA}=180^0\)(hai góc kề bù)

nên \(\widehat{DEA}+\widehat{AEF}=180^0\)

=>D,E,F thẳng hàng

30 tháng 4 2020

ABDC E

a) Vì AD phân giác BACˆBAC^ (gt)

=> ABAC=BDDCABAC=BDDC (t/c đường p/g ΔΔ )

=> ABAC+AB=BDBD+DCABAC+AB=BDBD+DC (t/c TLT)

=> 1212+20=BDBC1212+20=BDBC

=> 1232=BD281232=BD28

=> BD=12⋅2832=10,5BD=12⋅2832=10,5 cm

Ta có: BD+DC=BCBD+DC=BC (D ∈∈ BC)

=> DC=28−10,5=17,5DC=28−10,5=17,5 cm

Xét ΔΔ ABC có: DE // AB (gt)

=> DEAB=DCBCDEAB=DCBC (hệ qủa ĐL Ta-lét)

=> DE=AB⋅DCBC=12⋅17,528=7,5DE=AB⋅DCBC=12⋅17,528=7,5 cm

4 tháng 5 2020

Nguồn : hh

~ Chúc you học tốt ~

:)))

Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minha/ ΔABM=ΔECMb/ AB//CEBài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BCa/ Chứng minh : ΔAKB=ΔAKCb/ Chứng minh: AK vuông góc với BCc/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AKBài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D...
Đọc tiếp

Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh

a/ ΔABM=ΔECM

b/ AB//CE

Bài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BC

a/ Chứng minh : ΔAKB=ΔAKC

b/ Chứng minh: AK vuông góc với BC

c/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

Bài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho AM= MA

a/ Chứng minh ΔABM=ΔDCM

b/ Chứng minh AB//DC

c/ Chứng minh AM vuông góc với BC

d/ Tìm điều kiện của ΔABC để góc ADC bằng 30o

Bài 4: Cho ΔABC vuông tại A có góc B=30o

a/ Tính góc C

b/ Vẽ tia phân giác của góc C cắt cạnh AB tại D

c/ TRên cạnh CB lấy điểm M sao cho CM=CA. Chứng minh ΔACD=ΔMCD

d/ Qua C vẽ đường thẳng xy vuông góc CA. Từ A kẻ đường thẳng song song với CD cắt xy ở K. Chứng minh : AK=CD

e/ Tính góc AKC.

Bài 5: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=Bd

a/ Chứng minh AD=BC

b/ Gọi E là giao điểm AD và BC. Chứng minhΔEAC=ΔEBD

c/ Chứng minh OE là phân giác của góc xOy

2
11 tháng 12 2016

Bài 1: Ta có hình vẽ sau:

B A C M E

a)Xét ΔABM và ΔECM có:

BM = CM (gt)

\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)

MA = ME (gt)

=> ΔABM = ΔACM (c.g.c) (đpcm)

b) Vì ΔABM = ΔECM (ý a)

=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên

=> AB // CE (đpcm)

Bài 5: Ta có hình vẽ sau:

 

 

 

 

O A B D C x y E

a) Vì OA = OB (gt) và AC = BD (gt)

=> OC = OD

Xét ΔOAD và ΔOBC có:

OA = OB (gt)

\(\widehat{O}\) : Chung

OC = OD (cm trên)

=> ΔOAD = ΔOBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)(đpcm)

b) Vì ΔOAD = ΔOBC(ý a)

=> \(\widehat{OBC}=\widehat{OAD}\)\(\widehat{ODA}=\widehat{OCB}\)

(những cặp góc tương ứng)

Xét ΔEAC và ΔEBD có:

\(\widehat{OBC}=\widehat{OAD}\) (cm trên)

AC = BD (gt)

\(\widehat{ODA}=\widehat{OCB}\) (cm trên)

=> ΔEAC = ΔEBD (g.c.g) (đpcm)

c) Vì ΔEAC = ΔEBD (ý b)

=> EA = EB (2 cạnh tương ứng)

Xét ΔOAE và ΔOBE có:

OA = OB (gt)

\(\widehat{OBC}=\widehat{OAD}\) (đã cm)

EA = EB (cm trên)

=> ΔOAE = ΔOBE (c.g.c)

=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)

=> OE là phân giác của \(\widehat{xOy}\)

 

11 tháng 12 2016

Toán hình dài, bn k nên đăng nhiều bài 1 lúc

nên đăng từng bài thui nha!!!

7 tháng 5 2020

eo biet vi lop 5

7 tháng 5 2020

mik ko biết