Câu 2 (2,0 điểm)
a) Tìm các số tự nhiên x thỏa mãn bất phương trình sau: 5x – 2 =< 2x + 8
b) Cho 1/5.a – 4 < 1/5.b – 4. Hãy so sánh a và b
c) Chứng minh rằng: (a + b)2 >= 4ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
câu 1
a) 5x(x-2)=0 =>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b)(x+5)(2x-7)=0 =>\(\left[{}\begin{matrix}x+5=0\\2x-7=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-5\\x=\dfrac{7}{2}\end{matrix}\right.\)
c) \(\dfrac{5x}{x+2}\)=4 Đk x\(\ne\)-2
=> 5x=4(x+2)
=>5x-4x=8
=>x=8(tmđk)
a) Ta có :
5x - 2 =< 2x +8
<=> 5x - 2x =< 8 + 2
<=> 3x =< 10
<=> 3x. 1/3 =< 10.1/3
<=> x =< 10/3
Vậy S = ( 10/3 )
b) Ta có :
1/5a - 4 < 1/5b - 4
<=> 1/5 -4 + 4 < 1/5 - 4 + 4 ( cộng 4 )
<=> 1/5a < 1/5b
=> 1/5a.5 < 1/5b.5 ( nhân 5 )
<=> a < b
c ) ( a + b )2 ≥ 4ab
Ta có :
Vế trái : ( a + b )2
= a2 - 2ab + b2 + 4ab
= ( a - b )2 + 4ab
mà ( a - b )2 ≥ 0
=> ( a - b )2 + 4ab ≥ 0 + 4ab
<=> ( a + b )2 ≥ 4ab ( đpcm ! )
a, 5x-2 <= 2x+8 <=> 3x<=10 <=> x<=10/3