K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5 2019

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-3\end{matrix}\right.\)

Trừ vế cho vế ta được:

\(x_1+x_2-x_1x_2=1\)

Đây là biểu thức liên hệ ko phụ thuộc m

19 tháng 3 2023

Theo viet: \(x_1+x_2=m+2\)

                 \(x_1x_2=2m-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=2m+4\\x_1x_2=2m-1\end{matrix}\right.\)

Trừ vế cho vế: \(2x_1+2x_2-x_1x_2=5\)

Vậy hệ thức trên độc lập với m.

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Lời giải:
Theo hệ thức Viet, nếu $x_1,x_2$ là 2 nghiệm của pt $x^2-2xm-m^2-1=0$ thì:

$x_1+x_2=2m$

$x_1x_2=-m^2-1$

\(\Rightarrow \left\{\begin{matrix} (x_1+x_2)^2=4m^2\\ 4x_1x_2=-4m^2-4\end{matrix}\right.\)

$\Rightarrow (x_1+x_2)^2+4x_1x_2=-4$

$\Leftrightarrow x_1^2+x_2^2+6x_1x_2=-4$ 

Đây chính là biểu thức liên hệ giữa $x_1,x_2$ độc lập với $m$.

17 tháng 4 2020

tìm đk m khác 0

 đenta' = (m+1)2-m2-3m= 2m-2 >0 (=) m>1

áp dụng hệ thức vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+1}{m}=2+\frac{1}{m}\\x_1.x_2=\frac{m+3}{m}=1+\frac{3}{m}\end{cases}}\)

=) x1x- 3(x1+x2)=-5

NM
6 tháng 2 2021

Xét m=1 phương trình trở thành \(-4x+1=0\)có nghiệm duy nhất x=-1/4

với m#1 ta có \(\Delta'=\left(m+1\right)^2-m\left(m-1\right)=3m+1\)

với \(\hept{\begin{cases}m\ne1\\m>-\frac{1}{3}\end{cases}}\) pt có hai nghiệm phân biệt

với \(m=-\frac{1}{3}\) pt có nghiệm duy nhất

với \(m< -\frac{1}{3}\)pt vô nghiệm,

theo viet ta có \(\hept{\begin{cases}x_1+x_2=\frac{2\left(m+1\right)}{m-1}=2+\frac{4}{m-1}\\x_1x_2=\frac{m}{m-1}=1+\frac{1}{m-1}\end{cases}}\) lấy phương trình trên trừ đi 4 lần phương trình dưới ta có 

\(x_1+x_2-4x_1x_2=-2\)

ý sau, ta có \(\left|x_1-x_2\right|=\frac{2\sqrt{\Delta'}}{\left|a\right|}=\frac{2\sqrt{3m+1}}{\left|m-1\right|}>2\)

\(\frac{\Leftrightarrow4\left(3m+1\right)}{\left(m-1\right)^2}\ge4\Leftrightarrow m^2-5m\le0\Rightarrow m\in\left[0,5\right]\)

kết hợp với đk có 2 nghiệm phân biệt ở câu a , ta có \(m\in\left[0,5\right]\backslash\left\{1\right\}\)

27 tháng 7 2017

Để phương trình  có 2 nghiệm \(x_1;x_2\)thì \(\Delta=\left(m+2\right)^2-4\left(2m-1\right)=m^2=4m+4-8m+4=m^2-4m+8\)

\(=\left(m-2\right)^2+4>0\forall m\)

Nên phương trình luôn có 2 nghiệm phân biệt với mọi m

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=m+2\\x_1.x_2=2m-1\end{cases}\Rightarrow\hept{\begin{cases}2x_1+2x_2=2m+4\\x_1.x_2=2m-1\end{cases}}}\Rightarrow2x_1+2x_2-x_1.x_2=5\)

Vậy hệ thức giữa \(x_1;x_2\)độc lập với m là \(2x_1+2x_2-x_1.x_2=5\)

NV
19 tháng 1 2021

\(\Delta'=\left(m-1\right)^2-\left(m^2+m\right)=-3m+1>0\Rightarrow m< \dfrac{1}{3}\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2+m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{x_1+x_2+2}{2}\\x_1x_2=m^2+m\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\left(\dfrac{x_1+x_2+2}{2}\right)^2+\dfrac{x_1+x_2+2}{2}\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m (bạn có thể rút gọn thêm nếu cần)

18 tháng 9 2019

Đáp án: A

Theo hệ thức Vi-ét ta có:

Ta xét các phương án:

 

3 tháng 5 2020

đoạn cuối là m + 1 hay  m + 11 vậy bạn

3 tháng 5 2020

Xét 

\(\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m+1\right)=m^2-6m+9-m^2-1=-6m+7\ge0\)

\(\Rightarrow m\le\frac{7}{6}\)

Theo Viete ta có:\(x_1+x_2=\frac{2\left(m-3\right)}{m-1}\left(1\right);x_1x_2=\frac{m+1}{m-1}\)

\(\Leftrightarrow x_1x_2\left(m-1\right)=m+1\Leftrightarrow x_1x_2m-m=1+x_1x_2\)

\(\Leftrightarrow m\left(x_1x_2-1\right)=1+x_1x_2\Leftrightarrow m=\frac{1+x_1x_2}{x_1x_2-1}\)

Thay vào ( 1 ) rồi rút gọn là OK nhá,nhác ko muốn tính :))