6/(2x4)+6/(4x6)+6/(6x8)+...+6/(98x100)
Giúp mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{6}{2x4}+\frac{6}{4x6}+\frac{6}{6x8}+....+\frac{6}{48x50}\)
\(=\frac{6}{2}x\left(\frac{2}{2x4}+\frac{2}{4x6}+\frac{2}{6x8}+....+\frac{2}{48x50}\right)\)
\(=3x\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{48}-\frac{1}{50}\right)\)
\(=3x\left(\frac{1}{2}-\frac{1}{50}\right)=3x\frac{12}{25}=\frac{36}{25}\)
Vậy D=36/25
D=6/2x4 + 6/4x6 + 6/6x8 + ...+ 6 /48 x50
D=3 x (2/2x4 + 2/4x6 + 2/6x8 + ...+ 2 /48 x50)
D= 3x (1/2 - 1/4 + 1/4 - 1/6 + 1/6-1/8 + ... + 1/48 - 1/50)
D= 3 x (1/2 - 1/50)
D= 3 x 12/25
D= 36/25
\(A=2\times4+4\times6+6\times8+...+98\times100\)
\(6\times A=2\times4\times6+4\times6\times\left(8-2\right)+6\times8\times\left(10-4\right)+...+98\times100\times\left(102-96\right)\)
\(=2\times4\times6+4\times6\times8-2\times4\times6+6\times8\times10-4\times6\times8+...+98\times100\times102-96\times98\times100\)
\(=98\times100\times102\)
\(\Leftrightarrow A=\frac{98\times100\times102}{6}=166600\)
Câu hỏi tương tự nha
= 2 x ( 2 + 2 ) + 4 x ( 2 + 2 ) + 6 x ( 2 +2 ) +....+98 x ( 98 + 2 )
= 2 x 2 + 2 x 2 + 2 x 4 +4+......+98 x 98 = 2 x 98
= 2 x ( 2 + 4 + 6 +....+98 ) +( 2 x 2 + 4x4 + 6 x 6 +...+98 x 98 )
= 2 x 2450 + 40425 x 4
= 4900 + 161700 = 166600
Gọi biểu thức trên là A ta có:
Zô câu hỏi tương tự là cách giải
ĐS A = 49/200
S=(2+98)*(4+6)+...+100+100+102
100*10+....+100+100*102
=224400
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
Ta có:
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+....+\frac{1}{98.100}\)
\(\Rightarrow2A=\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{98.100}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(\Rightarrow A=\frac{49}{100}\div2=\frac{49}{200}\)
Vậy giá trị của biểu thức là \(\frac{49}{200}\)
\(E=2\times4+4\times6+6\times8+...+98\times100\)
\(6\times E=2\times4\times6+4\times6\times\left(8-2\right)+6\times8\times\left(10-4\right)+...+98\times100\times\left(102-96\right)\)
\(=2\times4\times6+4\times6\times8-2\times4\times6+...+98\times100\times102-96\times98\times100\)
\(=98\times100\times102\)
\(\Rightarrow E=\frac{98\times100\times102}{6}=166600\)
\(\frac{1}{2x4}\)+ \(\frac{1}{4x6}\)+ ... + \(\frac{1}{98x100}\)= \(\frac{1}{2}\)x(\(\frac{4-2}{2x4}\)+\(\frac{6-4}{4x6}\)+ ... + \(\frac{100-98}{98x100}\))
= \(\frac{1}{2}\)x(\(\frac{1}{2}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{8}\)+ ... + \(\frac{1}{98}\)-\(\frac{1}{100}\))
= \(\frac{1}{2}\)x(\(\frac{1}{2}\)-\(\frac{1}{100}\)) = \(\frac{49}{200}\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{96.98}+\frac{1}{98.100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
\(\frac{6}{2x4}+\frac{6}{4x6}+\frac{6}{6x8}+...+\frac{6}{98x100}\)
\(=3x\left(\frac{2}{2x4}+\frac{2}{4x6}+\frac{2}{6x8}+...+\frac{2}{98x100}\right)\)
\(=3x\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=3x\left(\frac{1}{2}-\frac{1}{100}\right)=3x\left(\frac{50}{100}-\frac{1}{100}\right)=3x\frac{49}{100}\)
\(=\frac{147}{100}\)
\(\frac{6}{2\cdot4}+\frac{6}{4\cdot6}+\frac{6}{6\cdot8}+...+\frac{6}{98\cdot100}\)
=\(\frac{3\cdot2}{2\cdot4}+\frac{3\cdot2}{4\cdot6}+\frac{3\cdot2}{6\cdot8}+...+\frac{3\cdot2}{98\cdot100}\)
=\(\text{}3\cdot\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{98\cdot100}\right)\)
=\(\text{}3\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
=\(\text{}3\cdot\left(\frac{1}{2}-\frac{1}{100}\right)\)
=\(\text{}3\cdot\frac{49}{100}=\frac{147}{100}\)