a) Số học sinh ba khối 6, 7, 8 tỉ lệ với các số 41; 29; 30. Biết rằng tổng số học sinh khối 6 và 7 là 140 học sinh. Tính số học sinh mỗi khối.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh ba khối 6, 7, 8 lần lượt là a,b,c
Điều kiện: a,b,c ∈ \(N^{\cdot}\)
Vì số học sinh ba khối 6, 7, 8 tỉ lệ với các số 41; 29; 30
⇒ \(\dfrac{a}{41}=\dfrac{b}{29}=\dfrac{c}{30}\)
Vì tổng số học sinh của 2 khối 6 và 7 là 140 học sinh
⇒ a+b=140
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{41}=\dfrac{b}{29}=\dfrac{c}{30}=\dfrac{a+b}{41+29}=\dfrac{140}{70}=2\)
⇒ \(\left\{{}\begin{matrix}a=41.2=82\\b=29.2=58\\c=30.2=60\end{matrix}\right.\)
Vậy ...
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{41}=\dfrac{b}{30}=\dfrac{c}{29}=\dfrac{a+c-b}{41+29-30}=\dfrac{320}{40}=8\)
Do đó: a=328; b=240;c=232
Gọi số hs khối 6,7,8 lần lượt là a,b,c ( a,b,c \(\varepsilonℕ^∗\))( học sinh)
Do số hs tỉ lệ vs các số 41, 29, 30 nên \(\frac{a}{41}=\frac{b}{29}=\frac{c}{30}\)
Tổng số hs khối 6 và 7 là 140 hs nên a+b=140.
Aps dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{41}=\frac{b}{29}=\frac{a+b}{41+29}=\frac{140}{70}=2\)
\(\Rightarrow\hept{\begin{cases}a=2.41=82\\b=2.29=58\\c=2.30=60\end{cases}}\)
Vậy số hs 3 khối 6,7,8 theo thứ tự là: 82 hs, 58hs, 60hs.
Gọi số HS khối 6;7;8 lần lượt là x;y;z\(\left(x;y;z\inℕ^∗\right)\)
Áp dụng tính cất dãy tỉ số bằng nhau'ta có:
\(\frac{x}{41}=\frac{y}{29}=\frac{z}{30}=\frac{x+y}{41+29}=\frac{140}{70}=2\)
Vậy\(\hept{\begin{cases}x=41\cdot2=82\\y=29\cdot2=58\\z=30\cdot2=60\end{cases}}\)
Gọi số học sinh khối 6,7,8 lần lượt là a,b,c . Ta có : \(\frac{a}{41}=\frac{b}{29}=\frac{c}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{41}=\frac{b}{29}=\frac{c}{30}=\frac{a+b}{41+29}=\frac{140}{70}=2\)
\(\frac{a}{41}=2\Rightarrow a=2.41=82\)
\(\frac{b}{29}=2\Rightarrow b=2.29=58\)
\(\frac{c}{30}=2\Rightarrow c=2.30=60\)
Vậy lập lại a,b,c tương ứng với khối 6,7,8
Gọi số hs 3 khối 6,7,8 lần lượt là a,b,c (a,b,c \(\inℕ^∗\))
Theo bài ra,ta có
\(\frac{a}{41}=\frac{b}{29}=\frac{c}{30}\)
Áp dụng TCDTSBN, ta có
\(\frac{a}{41}=\frac{b}{29}=\frac{c}{30}=\frac{a+b-c}{41+29-30}=\frac{80}{40}=2\)
\(a=2\cdot41=82\)
\(b=2\cdot29=58\)
\(c=2\cdot30=60\)
Vậy số hs khối 6,7,8 lầ lượt là 82,58,60
Gọi số học sinh của ba khối 6, 7, 8 lần lượt là \(a,b,c\)(học sinh) \(a,b,c\inℕ^∗\).
Vì số học sinh ba khối 6, 7, 8 tỉ lệ với các số \(41,29,30\)nên \(\frac{a}{41}=\frac{b}{29}=\frac{c}{30}\).
Vì số học sinh khối 6 và khối 7 nhiều hơn số học sinh khối 8 là \(80\)học sinh nên: \(a+b-c=80\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{41}=\frac{b}{29}=\frac{c}{30}=\frac{a+b-c}{41+29-30}=\frac{80}{40}=2\)
\(\Leftrightarrow\hept{\begin{cases}a=2.41=82\\b=2.29=58\\c=2.30=60\end{cases}}\)
\(#DuyNam\)
Gọi số hs từng khối là `x,y,z (x,y,z`\(\ne0\)`)`
Tỉ lệ của `3` khối `6,7,8` là `8,3,5`
Nghĩa là: `x/8 = y/3 = z/5`
Mà tổng số hs của `3` khối là `320`
`-> x/8 + y/3 + z/5 = 320`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/8 = y/3 = z/5 =`\(\dfrac{x+y+z}{8+3+5}=\dfrac{320}{16}=20\)
`=>` \(\left\{{}\begin{matrix}\dfrac{x}{8}=20\\\dfrac{y}{3}=20\\\dfrac{z}{5}=20\end{matrix}\right.\) `=>` \(\left\{{}\begin{matrix}x=160\\y=60\\z=100\end{matrix}\right.\)
số h/s khối 6 là 160
số h/s khối 7 là 60
số h/s khối 8 là 100
Gọi số học sinh khối 6;7;8 lần lượt là a(bạn),b(bạn),c(bạn)
(Điều kiện: \(a,b,c\in Z^+\))
Số học sinh khối 6;7;8 lần lượt tỉ lệ với 3;5;7 nên \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}\)
3 lần khối 7 hơn 2 lần khối 8 là 81 bạn nên 3b-2c=81
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{3b-2c}{3\cdot5-2\cdot7}=\dfrac{81}{1}=81\)
=>\(a=81\cdot3=243;b=81\cdot5=405;c=81\cdot7=567\)
Vậy: Số học sinh của các khối 6;7;8 lần lượt là 234 bạn; 405 bạn; 567 bạn
Gọi số học sinh 3 khối 6,7,8 lần lượt là a,b,c\(\left(a,b,c>0\right)\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{41}=\dfrac{b}{29}=\dfrac{c}{30}=\dfrac{a+b}{41+29}=\dfrac{140}{70}=2\)
\(\Rightarrow\left\{{}\begin{matrix}a=2.41=82\\b=2.29=58\\c=2.30=60\end{matrix}\right.\)
Vậy ...
Gọi số học sinh của khối 6;7;8 lần lượt là x,y,z
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{41}=\dfrac{y}{29}=\dfrac{z}{30}=\dfrac{x+y}{41+29}=\dfrac{140}{70}=2\)
Do đó: x=82; y=58; z=60