Cho đa thức: A(x)= x2 + ax + b biết A(1) = 0, A(2) = 5. Tính A(3)
Giúp mình với ạ, mai kiểm tra rồi T_T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)7x^23xy^2=\left(7.3\right)\left(x^2.x\right)y^2=21x^3y^2\)
Bậc của đơn thức : \(3+2=5\)
\(b)x^2yz.\left(-2\right)xy.2z=\left(-2.2\right).\left(x^2.x\right)\left(y.y\right)\left(z.z\right)\)
\(-4x^3y^2z^2\)
Bậc của đơn thức : \(3+2+2=7\)
Chúc bạn học tốt !!!
Bài 2 : phân tích các đa thức sau thành nhân tử
a, x3 - 2x2 + x
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
b, x2 - 2x - y2 + 1
\(=x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
vt mũ hộ mk đuy bạn :
\(x^3-2x^2+x\)
\(=x^3-x^2-x^2+x\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)\)
\(=\left(x^2-x\right)\left(x-1\right)\)
\(b,x^2-2x-y^2+1\)
\(=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1+y\right)\left(x-1-y\right)\)
a) Ta có : \(A\left(x\right)=x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Thay x=-1:
\(-1-a-b-2=0\)\(\Leftrightarrow a+b=-3\left(1\right)\)
Thay x=-2:
\(\left(-2\right)^3+a\left(-2\right)^2+\left(-2\right)b-2=-10+4a-2b=0\)\(\Leftrightarrow4a-2b=10\left(2\right)\)
Từ (1)(2):\(\left\{{}\begin{matrix}a+b=-3\\4a-2b=10\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\frac{2}{3}\\b=\frac{-11}{3}\end{matrix}\right.\)
a) \(x-\dfrac{3}{5}=\dfrac{4}{-10}\)
\(x=\dfrac{4}{-10}+\dfrac{3}{5}\)
\(x=\dfrac{-4}{10}+\dfrac{6}{10}\)
\(x=\dfrac{1}{5}\)
b) \(\dfrac{3}{x}-2=\dfrac{4}{x}+4\)
\(\dfrac{3}{x}-2+2=\dfrac{4}{x}+4+2\)
\(\dfrac{3}{x}=\dfrac{4}{x}+4\)
\(\dfrac{3}{x}=\dfrac{4x+4}{x}\)
\(3x=\left(4x+4\right)x\)
\(3x=5x\cdot x+4x\)
\(3x=x\left(5x+4\right)\)
\(3=5x+4\)
\(5x=-1\)
\(x=\dfrac{-1}{5}\)
Với a; b > 0
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=\frac{4}{3}\)
\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{9}{4}\)=> \(\frac{1}{ab}\ge\frac{4}{9}\)
Khi đó: \(S=\left(1+\frac{2}{a}\right)\left(1+\frac{2}{b}\right)=1+2\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{ab}\ge1+2.\frac{4}{3}+4.\frac{4}{9}=\frac{49}{9}\)
Dấu "=" xảy ra <=> a = b = 3/2
vậy min S = 49/9
A(1) =1+a+b =0=>a+b=-1 (1)
A(2) =4+2a+b =5 =>2a + b =5-4=1 (2)
từ (1) (2) =>2a+b-(a+b)=1-(-1)
2a-a=a=1+1=2
a+b=-1
2+b=-1=>b=-1-2=-3
vậy A(3) =9+6-3=12