a)3/4x-1/3=-5/12
b)2 1/3 :x=-4/5
c)x-4/5=3/10
Cần Gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3+x^2-4x-12\)
\(=2x^3+5x^2+6x-4x^2-10x-12\)
\(=\left(2x^3+5x^2+6x\right)-\left(4x^2+10x+12\right)\)
\(=x\left(2x^2+5x+6\right)-2\left(2x^2+5x+6\right)\)
\(=\left(x-2\right)\left(2x^2+5x+6\right)\)
\(a,2x^3+x^2-4x-12=\left(2x^3-4x^2\right)+\left(5x^2-10x\right)+\left(6x-12\right)=2x^2\left(x-2\right)+5x\left(x-2\right)+6\left(x-2\right)=\left(x-2\right)\left(2x^2+5x+6\right)\)
\(b,x^5-xy^4+x^4y-y^5=x\left(x^4-y^4\right)+y\left(x^4-y^4\right)=\left(x+y\right)\left(x^4-y^4\right)=\left(x+y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x+y\right)^2\left(x-y\right)\left(x^2+y^2\right)\)
\(c,\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)-9=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]-9=\left(x^2+8x+7\right)\left(x^2+8x+15\right)-9\)
đặt \(x^2+8x+11=y\)
\(\left(x^2+8x+7\right)\left(x^2+8x+15\right)-9=\left(y-4\right)\left(y+4\right)-9=y^2-16-9=y^2-25=\left(y-5\right)\left(y+5\right)=\left(x^2+8x+11-5\right)\left(x^2+8x+11+5\right)=\left(x^2+8x+6\right)\left(x^2+8x+16\right)=\left(x^2+8x+6\right)\left(x+4\right)^2\)
Bài 1:
c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)
\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)
Suy ra: \(-12x-3=8x-2-6x-8\)
\(\Leftrightarrow-12x-3-2x+10=0\)
\(\Leftrightarrow-14x+7=0\)
\(\Leftrightarrow-14x=-7\)
\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
a) \(\dfrac{5}{24}+x=\dfrac{7}{12}\)
<=> \(x=\dfrac{7}{12}-\dfrac{5}{24}=\dfrac{14}{24}-\dfrac{5}{24}=\dfrac{9}{24}=\dfrac{3}{8}\)
b) \(x-\dfrac{3}{4}=\dfrac{1}{2}\)
<=> \(x=\dfrac{1}{2}+\dfrac{3}{4}=\dfrac{2}{4}+\dfrac{3}{4}=\dfrac{5}{4}\)
c) bn ghi rõ đề chút
a)\(\dfrac{2}{3}.\dfrac{4}{5}+\dfrac{1}{3}.\dfrac{4}{5}=\left(\dfrac{2}{3}+\dfrac{1}{3}\right).\dfrac{4}{5}=1.\dfrac{4}{5}=\dfrac{4}{5}\)
b)\(\dfrac{2}{3}.\dfrac{4}{5}-\dfrac{1}{3}.\dfrac{4}{5}=\left(\dfrac{2}{3}-\dfrac{1}{3}\right).\dfrac{4}{5}=\dfrac{1}{3}.\dfrac{4}{5}=\dfrac{4}{15}\)
a) \(\dfrac{2}{3}\times\dfrac{4}{5}+\dfrac{1}{3}\times\dfrac{4}{5}=\dfrac{4}{5}\times\left(\dfrac{2}{3}+\dfrac{1}{3}\right)=\dfrac{4}{5}\times1=\dfrac{4}{5}\)
b) \(\dfrac{2}{3}\times\dfrac{4}{5}-\dfrac{1}{3}\times\dfrac{4}{5}=\dfrac{4}{5}\times\left(\dfrac{2}{3}-\dfrac{1}{3}\right)=\dfrac{4}{5}\times\dfrac{1}{3}=\dfrac{4}{15}\)
c) \(\dfrac{1}{2}:\dfrac{3}{4}+\dfrac{1}{6}:\dfrac{3}{4}=\dfrac{1}{2}\times\dfrac{4}{3}+\dfrac{1}{6}\times\dfrac{4}{3}=\dfrac{4}{3}\times\left(\dfrac{1}{2}+\dfrac{1}{6}\right)=\dfrac{4}{3}\times\dfrac{2}{3}=\dfrac{8}{9}\)
d) \(\dfrac{1}{2}:\dfrac{3}{4}-\dfrac{1}{6}:\dfrac{3}{4}=\dfrac{1}{2}\times\dfrac{4}{3}-\dfrac{1}{6}\times\dfrac{4}{3}=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=\dfrac{4}{3}\times\dfrac{1}{3}=\dfrac{4}{9}\)
\(F=-3\left(x-8\right)\left(2x+1\right)-\left(x+5\right)\left(2-3x\right)-4x\left(x-6\right)\)
\(=-3\left(-3-8\right)\left(-6+1\right)-\left(5-3\right)\left(2+9\right)+12\left(-9\right)\)
\(=-3\left(-11\right)\left(-5\right)-\left(-2\right)11-12.9\)
\(=-165+22-108=22-273=-251\)
\(G=\left(5x-4\right)\left(5-2x\right)-7x\left(x^2-4x+3\right)+\left(x^2-4x\right)\left(7x-2\right)\)
\(=\left(5-4\right)\left(5-2\right)-7\left(1-4+3\right)+\left(1-4\right)\left(7-2\right)\)
\(=3-7.0+5.\left(-3\right)=3-15=-12\)
\(H=\left(-3x+5\right)\left(x-6\right)-\left(x-1\right)\left(x^2-2x+3\right)+\left(x+2\right)\left(x^2-3\right)\)
\(=\left(3+5\right)\left(-1-6\right)-\left(-1-1\right)\left(1+2+3\right)+\left(-1+2\right)\left(1-3\right)\)
\(=8\left(-7\right)-\left(-2\right)6+1\left(-2\right)=-56+12-2=-46\)
\(L=5x\left(x-1\right)\left(2x+3\right)-10x\left(x^2-4x+5\right)-\left(x-1\right)\left(x-4\right)\)
\(=-\frac{5}{3}\left(-\frac{4}{3}\right)\left(-\frac{2}{3}+3\right)+\frac{10}{3}\left(\frac{1}{9}+\frac{4}{3}+5\right)-\left(-\frac{4}{3}\right)\left(-\frac{1}{3}-4\right)\)
\(=\frac{20}{9}\left(\frac{7}{3}\right)+\frac{10}{3}\left(\frac{13}{9}+5\right)+\frac{4}{3}\left(-\frac{13}{3}\right)\)
\(=\frac{140}{27}+\frac{10}{3}.\frac{58}{9}-\frac{52}{9}\)
\(=\frac{140}{27}+\frac{580}{27}-\frac{156}{27}=\frac{140+580-156}{27}=\frac{720-156}{27}=\frac{564}{27}\)
\(M=-7x\left(x-5\right)-\left(x-1\right)\left(x^2-x-2\right)+x^2\left(x-3\right)-5x\left(x-8\right)\)
\(=\frac{-7}{2}\left(\frac{1}{2}-5\right)+\frac{\left(\frac{1}{4}-\frac{1}{2}-2\right)}{2}+\frac{1}{4}\left(\frac{1}{2}-3\right)-\frac{5}{2}\left(\frac{1}{2}-8\right)\)
\(=\frac{7}{2}.\frac{9}{2}-\frac{9}{8}-\frac{1}{4}.\frac{5}{2}+\frac{5}{2}.\frac{15}{2}\)
\(=\frac{63}{4}-\frac{9}{8}-\frac{5}{8}+\frac{75}{4}=\frac{138}{4}-\frac{7}{4}=\frac{131}{4}\)
a: \(\Leftrightarrow\left|x\cdot\dfrac{7}{3}-\dfrac{3}{4}\right|=1+\dfrac{1}{3}+\dfrac{2}{3}=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x\cdot\dfrac{7}{3}-\dfrac{3}{4}=2\\x\cdot\dfrac{7}{3}-\dfrac{3}{4}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{33}{28}\\x=-\dfrac{15}{28}\end{matrix}\right.\)
b: \(\Leftrightarrow\left|x\cdot\dfrac{2}{3}-\dfrac{1}{3}\right|=\dfrac{6}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x\cdot\dfrac{2}{3}-\dfrac{1}{3}=-\dfrac{6}{5}\\x\cdot\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-13}{10}\\x=\dfrac{23}{10}\end{matrix}\right.\)
a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12
= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x
= 6x4 - 17 + 6x3 - 5x
= 6x4 + 6x3 - 5x - 17
B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2
= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2
= 4x4 + 6x3 - 5x - 15 - 2x2
= 4x4 + 6x3 - 2x2 - 5x - 15
b) C(x) = A(x) - B(x)
= 6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)
= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15
= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2
= 2x4 - 2 + 2x2
= 2x4 + 2x2 - 2
1) \(3\left(x+4\right)-x^2-4x=3\left(x+4\right)-x\left(x+4\right)=\left(x+4\right)\left(3-x\right)\)
2) \(5x^2-5y^2-10x+10y=5\left(x^2-y^2\right)-10\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y\right)-10\left(x-y\right)=\left(x-y\right)\left(5x+5y-10\right)\)
3) \(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)
4) \(ax-bx-a^2+2ab-b^2=x\left(a-b\right)-\left(a^2-2ab+b^2\right)\)
\(=x\left(a-b\right)-\left(a-b\right)^2=\left(a-b\right)\left(x-a+b\right)\)
5) \(x^3-x^2-x+1=x^2\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x-1\right)\left(x+1\right)=\left(x-1\right)^2\left(x+1\right)\)
6) \(x^2+4x-y^2+4=x^2+4x+4-y^2=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
a)3/4x-1/3=-5/2
3/4x =-5/2+1/3
3/4x =-1/12
x =-1/12:3/4
x =-1/9
b)2 1/3:x=-4/5
7/3:x =-4/5
x =7/3:-4/5
x =-35/12
c)x-4/5=3/10
x =3/10+4/5
x =11/10
Chúc bạn hok tốt
x-4/5 = 3/10
=> 10(x - 4) = 5.3
=> 10x - 40 = 15
=> 10x = 55
=> x = 5,5