Cho f(x) = 4x^2 + 2x - 1:
Tìm x để f(x) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(f\left(x\right)=4x+a-\sqrt{3}\left(2x+1\right)\)
\(=4x+a-2\sqrt{3}\cdot x-\sqrt{3}\)
\(=x\left(4-2\sqrt{3}\right)-\sqrt{3}+a\)
Vì \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2>0\)
nên hàm số \(y=f\left(x\right)=x\left(4-2\sqrt{3}\right)+a-\sqrt{3}\) luôn đồng biến trên R
b: f(x)=0
=>\(x\left(4-2\sqrt{3}\right)+a-\sqrt{3}=0\)
=>\(x\left(4-2\sqrt{3}\right)=-a+\sqrt{3}\)
=>\(x=\dfrac{-a+\sqrt{3}}{4-2\sqrt{3}}\)
c) thay x=1 vào đa thức f(x) ta có: f(1)=4.1^3-1^2+2.1-5
=4-2+2-5
=- 1
vậy 1 k phải là nghiệm của đa thức f(x)
MÌNH CHỈ LÀM ĐƯỢC C THÔI HOK TỐT
làm sai nha chỗ nào là 1 thì thay bằng -1 nha kq sẽ ra nha
4x^3-3x^2 +1 x^2+2x-1 4x 4x^3+8x^2-4x - -11x^2+4x+1 -11 -11x^2-22x+11 - 26x-10
OLM chỉ có phần chụp ảnh cho CTV
Lưu ý bạn cố phải viết thẳng hàng vì OLM ko viết đc
Để f(x)=0
<=> 4x^2+2x-1=0
<=> (2x)^2+2.2x.1/2+(1/2)^2 =5/4
<=> (2x+1/2)^2=5/4
<=> \(\orbr{\begin{cases}2x+\frac{1}{2}=\sqrt{\frac{5}{4}}\\2x+\frac{1}{2}=-\sqrt{\frac{5}{4}}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{\left(\sqrt{\frac{5}{4}}-\frac{1}{2}\right)}{2}\\x=\frac{\left(-\sqrt{\frac{5}{4}}-\frac{1}{2}\right)}{2}\end{cases}}\)
\(4x^2+2x-1=0\Leftrightarrow\left(2x\right)^2+2.2x.\frac{1}{2}+\frac{1}{4}-1-\frac{1}{4}=0\Leftrightarrow\left(2x+\frac{1}{2}\right)^2-\frac{5}{4}=0.\)
\(\Leftrightarrow\left(2x+\frac{1}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2=0\Leftrightarrow\left(2x+\frac{1}{2}+\frac{\sqrt{5}}{2}\right)\left(2x+\frac{1}{2}-\frac{\sqrt{5}}{2}\right)=0.\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{1+\sqrt{5}}{2}=0\\2x+\frac{1-\sqrt{5}}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1-\sqrt{5}}{4}\\x=\frac{-1+\sqrt{5}}{4}\end{cases}.}}\)