cho các số x,y,z thỏa mãn 1/x +1/y+1/z=2 và 2/xy -1/z^2 =4 tính giá trị p=(x+2y+z)^2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 1/x = a ; 1/y = b ; 1/z = c
Ta có : \(a+b+c=2;2ab-c^2=4\)
\(a^2+b^2+c^2+2ab+2bc+2ac=2ab-c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2bc+2ac+c^2=0\)
\(\Leftrightarrow\left(a+c\right)^2+\left(b+c\right)^2=0\)
=> a + c = 0 và b + c = 0
=> a = b = -c
\(\Rightarrow\frac{1}{x}=\frac{1}{y}=-\frac{1}{z}\)
Khi đó , ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=-\frac{2}{z}+\frac{1}{z}=-\frac{1}{z}=2\Rightarrow z=-\frac{1}{2}\)
\(P=\left(x+2y+z\right)^2=4z^2\) \(=4.\left(-\frac{1}{2}\right)^2=1\)
Tham khảo nha
chắc câu này a đăng lên cho vui :vv
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2< =>\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=2^2=4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\left(\frac{2}{xy}-\frac{1}{z^2}\right)+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}+4=4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xy}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4-4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{zx}=0\)
\(< =>\left(\frac{1}{x^2}+\frac{2}{zx}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)
\(< =>\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0< =>\frac{1}{x}=\frac{1}{y}=-\frac{1}{z}\)
\(< =>x=y=-z\)Thế vào giả thiết ta được : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(< =>\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2< =>\frac{-1}{z}+\frac{-1}{z}+\frac{1}{z}=2\)
\(< =>\frac{-1-1+1}{z}=2< =>2z=-1< =>z=-\frac{1}{2}\)
Suy ra \(x=y=-z=-\left(-\frac{1}{2}\right)=\frac{1}{2}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
Nên \(P=\left(x+2y+z\right)^{2019}=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2019}=1^{2019}=1\)
Bài 1 :
Ta có :
\(x^7+\frac{1}{x^7}=\left(x^3+\frac{1}{x^3}\right)\left(x^4+\frac{1}{x^4}\right)-\left(x+\frac{1}{x}\right)\)
\(\left(x+\frac{1}{x}\right)=a\Leftrightarrow\left(x+\frac{1}{x}\right)^2=a^2\)
\(\Leftrightarrow x^2+\frac{1}{x^2}+2.x.\frac{1}{x}=a^2\)
\(\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-x.\frac{1}{x}+\frac{1}{x^2}\right)\)
\(=a\left(x^2+\frac{1}{x^2}-1\right)=a\left(a^2-3\right)\)
\(x^4+\frac{1}{x^4}=\left(x^2+\frac{1}{x^2}\right)^2-2.x^2.\frac{1}{x^2}\)
\(=\left(a^2-2\right)^2-2=a^4-4a^2+4-2\)
\(=a^4-4a^2+2\)
\(\Rightarrow x^7+\frac{1}{x^7}=a.\left(a^2-3\right).\left(a^4-4a^2+2\right)-a\)
\(=\left(a^3-3a\right)\left(a^4-4a^2+2\right)-a\)
\(=a^7-4a^5+2a^3-3a^5+12a^3-6a-a\)
\(=a^7-7a^5+14a^3-7a\)
Bài 2 :
Ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=2^2\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=\frac{2}{xy}-\frac{1}{z^2}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{z^2}+\frac{2}{yz}+\frac{2}{zx}=0\)
\(\Rightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)
\(\Rightarrow\frac{1}{x}+\frac{1}{z}=\frac{1}{y}+\frac{1}{z}=0\) vì \(\left(\frac{1}{x}+\frac{1}{z}\right)^2,\left(\frac{1}{y}+\frac{1}{z}\right)^2\ge0\)
\(\Rightarrow x=y=-z\)
\(\Rightarrow\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2\Rightarrow-\frac{1}{z}=2\Rightarrow z=-\frac{1}{2}\)
\(\Rightarrow x=y=\frac{1}{2}\)
\(\Rightarrow x+2y+z=\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}=1\)
\(\Rightarrow P=1\)
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)
Khai triển cả 2 vế ta được \(\left(\frac{1}{y}+\frac{1}{z}\right)^2+\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)
=>\(\hept{\begin{cases}\frac{1}{y}+\frac{1}{z}=0\\\frac{1}{x}+\frac{1}{z}=0\end{cases}}\)=>\(\frac{1}{x}=\frac{1}{y}\Rightarrow x=y\)
=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{z}=2\Rightarrow\frac{4}{x^2}+\frac{4}{xz}+\frac{1}{z^2}=4\)(1)
\(\frac{2}{xy}-\frac{1}{z^2}=\frac{2}{x^2}-\frac{1}{z^2}=4\)(2)
Từ (1) và (2) suy ra
\(\frac{2}{x^2}+\frac{4}{xz}+\frac{2}{z^2}=0\Rightarrow\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}=0\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)\(\Rightarrow\frac{1}{x}+\frac{1}{z}=0\Rightarrow x=y=-z\)
=> \(P=\left(x+2y+z\right)^{2019}=\left(2y\right)^{2019}\)
à thêm cái này nữa. Sorry viết thiếu
Vì x=y=-z\(\Rightarrow\frac{2}{x}-\frac{1}{x}=2\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}.\)
lúc đó \(P=\left(2.\frac{1}{2}\right)^{2019}=1\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}=\frac{2}{xy}-\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}-\frac{2}{xy}+\frac{1}{z^2}=0\)
\(\Leftrightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{z}=0\\\frac{1}{y}+\frac{1}{z}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{1}{x}=\frac{1}{-z}\\\frac{1}{y}=\frac{1}{-z}\end{cases}\Leftrightarrow}\frac{1}{x}=\frac{1}{y}=\frac{1}{-z}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Leftrightarrow\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2\)
\(\Leftrightarrow z=\frac{-1}{2}\)
\(x=y=\frac{1}{2}\)
\(\Rightarrow C=\left(x+2y+z\right)^{2021}=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2021}=1^{2021}=1\)
Ta có:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}-\frac{2}{xy}+\frac{1}{z^2}=0\)
\(\Leftrightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\\\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=-\frac{1}{z}\\\frac{1}{y}=-\frac{1}{z}\end{cases}}}\)
\(\Leftrightarrow x=y=-z\)
Thay vào \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)ta được :
\(x=y=\frac{1}{2};z=-\frac{1}{2}\)
\(\Rightarrow P=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2021}=1^{2020}=1\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=\frac{2}{xy}-\frac{1}{z^2}\)
\(\Leftrightarrow\left(\frac{1}{x^2}+\frac{2}{zx}+\frac{1}{z^2}\right)+\left(\frac{1}{z^2}+\frac{2}{yz}+\frac{1}{y^2}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)
Hai số hạng đều không âm nên ta được:
\(\left\{{}\begin{matrix}\frac{1}{x}=-\frac{1}{z}\\\frac{1}{y}=-\frac{1}{z}\end{matrix}\right.\Leftrightarrow x=y=-z\)
Thay vào phương trình đầu:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\Leftrightarrow\frac{1}{x}+\frac{1}{x}-\frac{1}{x}=2\Leftrightarrow\frac{1}{x}=2\Leftrightarrow x=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2};z=-\frac{1}{2}\)