giải bất phương trình và biểu diễn tập nghiệm
a)\(\frac{x}{2}\)+\(\frac{1-x}{3}\)>0
b)\(\frac{3\left(x-1\right)}{x+2}\)<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{2\left(2-3x\right)}{5}< \frac{4-2x}{3}\Leftrightarrow\frac{4-6x}{5}-\frac{4-2x}{3}< 0\)
\(\Leftrightarrow\frac{12-18x-20+10x}{15}< 0\Leftrightarrow-8x-8< 0\Leftrightarrow x>-1\)vì 15 > 0
-/-/-(----|------>
-1 0
Vậy tập ngiệm của bft là S = { x | x > -1 }
b, \(x\left(9x+1\right)+1\le\left(1-3x\right)^2\Leftrightarrow9x^2+x+1\le1-6x+9x^2\)
\(\Leftrightarrow7x\le0\Leftrightarrow x\le0\)
-------]--/-/-/-/-->
0
Vậy tập nghiệm của bft là S = { x | x =< 0 }
\(\frac{2\cdot\left(2-3x\right)}{5}< \frac{4-2x}{3}\)
\(\frac{4-6x}{5}< \frac{4-2x}{3}\)
\(\left(4-6x\right)\cdot3< \left(4-2x\right)\cdot5\)
\(12-18x< 20-10x\)
\(10x-18x< 20-12\)
\(-8x< 8\)
\(x>-1\)
\(x\cdot\left(9x+1\right)+1\le\left(1-3x\right)^2\)
\(9x^2+x+1\le9x^2-6x+1\)
\(x\le-6x\)
\(x+6x\le0\)
\(7x\le0\)
\(x\le0\)
1. Nửa chu vi mảnh vườn : 56 : 2 = 28m
Gọi chiều dài mảnh vườn là x ( m , x < 28 )
Chiều rộng = x - 8
Chiều dài + chiều rộng = 28m
=> Ta có phương trình : x + ( x - 8 ) = 28
<=> x + x - 8 = 28
<=> 2x - 8 = 28
<=> 2x = 36
<=> x = 18 ( tmđk )
=> Chiều dài = 18m ; chiều rộng = 18 - 8 = 10m
Diện tích mảnh vườn = 18 . 10 = 180m2
2. \(x\left(2x+5\right)-2x\left(x+1\right)\le12\)
<=> \(2x^2+5x-2x^2-2x\le12\)
<=> \(3x\le12\)
<=> \(3x\cdot\frac{1}{3}\le12\cdot\frac{1}{3}\)
<=> \(x\le4\)
Biểu diễn thì mình không biết vì mới học lớp 7
3. \(\frac{3}{x-3}=\frac{2}{x+1}\)( đkxđ : \(x\ne3;x\ne-1\))
<=> \(\frac{3\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}=\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\)
<=> \(3x+3=2x-6\)
<=> \(3x-2x=-6-3\)
<=> \(x=-9\)( tmđk )
Câu 3 bạn bổ sung nốt cho mình :
Vậy tập nghiệm của phương trình là S = { -9 }
Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)
\(\Leftrightarrow6x+24+9x+6< 10x-10\)
\(\Leftrightarrow5x+40< 0\)
\(\Leftrightarrow x< -8\)
Tự biểu diễn nha bạn
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\Rightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)
\(\Rightarrow6x+24+9x+6< 10x-10\)
\(5x< -40\)
\(\Rightarrow x< -8\)
nhiều thế
a) \(\frac{5x-2}{2}\ge\frac{3-x}{3}\Leftrightarrow\frac{3\left(5x-2\right)}{6}\ge\frac{2\left(3-x\right)}{6}\Leftrightarrow15x-6\ge6-2x\Leftrightarrow x\ge\frac{12}{17}\)
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
a.)\(\frac{x}{2}+\frac{1-x}{3}>0.\)
\(\Leftrightarrow\frac{1-x}{3}>\frac{-x}{2}\)
\(\Leftrightarrow\left(1-x\right)\cdot2>3\cdot\left(-x\right)\)
\(\Leftrightarrow2-2x>-3x\)
\(\Leftrightarrow2x+3x>2\)
\(\Leftrightarrow5x>2\)
\(\Leftrightarrow x>\frac{2}{5}\)
. . .