Tim a,b,c biet: \(a^2+4b^2+9=2ab+3a+6b\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{3a-2b}{4}=\frac{2c-4a}{3}=\frac{4b-3c}{2}\)
=> \(\frac{12a-8b}{16}=\frac{6c-12a}{9}=\frac{8b-6c}{4}=\frac{12a-8b+6c-12a+8b-6c}{16+9+4}=\frac{0}{29}=0\)
=> \(\hept{\begin{cases}12a-8b=0\\6c-12a=0\\8b-6c=0\end{cases}}\Rightarrow\hept{\begin{cases}12a=8b\\6c=12a\\8b=6c\end{cases}}\Rightarrow\hept{\begin{cases}3a=2b\\2c=4a\\4b=3c\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{a}{2}=\frac{c}{4}\\\frac{c}{4}=\frac{b}{3}\end{cases}}\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
=> \(\frac{\left|a\right|}{\left|2\right|}=\frac{\left|b\right|}{\left|3\right|}=\frac{\left|c\right|}{\left|4\right|}=\frac{\left|a\right|-\left|b\right|-\left|c\right|}{\left|2\right|-\left|3\right|-\left|4\right|}=\frac{-10}{2-3-4}=\frac{-10}{-5}=2\)
=> \(\hept{\begin{cases}a=\pm4\\b=\pm6\\c=\pm8\end{cases}}\)Vì mẫu số cùng dấu => Tử số cùng dấu
=> Các cặp (a;b;c) tìm được là (4;6;8) ; (-4;-6;-8)
a, \(\left(a^2+b^2-2ab+2a-2b+1\right)+\left(b^2-2b+1\right)=0\)
=> \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)
Mà \(\left(a-b+1\right)^2\ge0,\left(b-1\right)^2\ge0\)
=> \(\hept{\begin{cases}a-b+1=0\\b=1\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}}\)
b,Tương tự
\(\left(a-2b+1\right)^2+\left(b-1\right)^2=0\)
=>\(\hept{\begin{cases}a=1\\b=1\end{cases}}\)
Bất đẳng thức đã cho tương đương:
\(\dfrac{6a^3b+4ab^3+a^2b^2+4b^4}{3a^4+14a^2b^2+8b^4}\le\dfrac{3}{5}\)
\(\Leftrightarrow\left(a-b\right)^2\left(3a-2b\right)^2\ge0\) (luôn đúng).
\(a^2+4b^2+9=2ab+3a+6b\)
\(\Leftrightarrow2a^2+8b^2+18=4ab+6a+12b\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-6a+9\right)+\left(4b^2-12b+9\right)=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-3\right)^2+\left(2b-3\right)^2=0\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-2b\right)^2=0\\\left(a-3\right)^2=0\\\left(2b-3\right)^2=0\end{matrix}\right.\)
(do \(\left(a-2b\right)^2\ge0;\left(a-3\right)^2=0;\left(2b-3\right)^2=0\) )
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=\frac{3}{2}\end{matrix}\right.\) Vậy (a;b)=(3;3/2)
\(\Leftrightarrow2\left(a^2+4b^2+9\right)=2\left(2ab+3a+6b\right)\)
\(\Leftrightarrow2a^2+8b^2+18-4ab-6a-12b=0\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-6a+9\right)+\left(4b^2-12b+9\right)=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-3\right)^2+\left(2b-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2b\right)^2=0\\\left(a-3\right)^2=0\\\left(2b-3\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-2b=0\\a-3=0\\2b-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=3\\b=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=\frac{3}{2}\end{matrix}\right.\)