K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

=>(SAB) vuông góc (SBC)

NV
11 tháng 3 2022

\(AC=\sqrt{AB^2+BC^2}=2a\) \(\Rightarrow AO=\dfrac{1}{2}AC=a\) ; \(AM=\dfrac{1}{2}AO=\dfrac{a}{2}\)

\(SA\perp\left(ABCD\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD) \(\Rightarrow\widehat{SCA}=45^0\)

\(\Rightarrow SA=AC.tan45^0=2a\)

\(AB^2=a^2\) ; \(AM.AC=\dfrac{a}{2}.2a=a^2\Rightarrow AB^2=AM.AC\)

\(\Rightarrow\dfrac{AB}{AM}=\dfrac{AC}{AB}\Rightarrow\Delta ABM\sim\Delta ACB\left(c.g.c\right)\)

\(\Rightarrow\widehat{AMB}=\widehat{ABC}=90^0\Rightarrow BM\perp AC\)

Lại có \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BM\)

\(\Rightarrow BM\perp\left(SAC\right)\Rightarrow\left(SBM\right)\perp\left(SAC\right)\)

NV
11 tháng 3 2022

undefined

19 tháng 4 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (BD ⊥ SA & BD ⊥ AC ⇒ BD ⊥ (SAC)

⇒ BC ⊥ SC.

b) (BC ⊥ SA & BC ⊥ AB ⇒ BC ⊥ (SAB)

⇒ (SBC) ⊥ (SAB).

c) + Xác định góc α giữa đường thẳng SC và mp(ABCD):

(C ∈(ABCD) & SA ⊥ (ABCD) ⇒ ∠[(SC,(ABCD))] = ∠(ACS) = α

+ Tính góc:

Tam tam giác vuông SCA, ta có:

tanα = SA/AC = √3/3 ⇒ α   =   30 o .

17 tháng 11 2023

a: Xét ΔSAB có

M,N lần lượt là trung điểm của SA,SB

=>MN là đường trung bình cuả ΔSAB

=>MN//AB

MN//AB

AB\(\subset\)(ABCD)

MN không nằm trong mp(ABCD)

Do đó: MN//(ABCD)

b: Xét ΔSCB có

N,P lần lượt là trung điểm của SB,SC

=>NP là đường trung bình của ΔSBC

=>NP//BC

NP//BC

BC\(\subset\)(ABCD)

NP không nằm trong mp(ABCD)

Do đó: NP//(ABCD)

c: NP//(ABCD)

MN//(ABCD)

MN,NP nằm trong mp(MNP)

Do đó: (MNP)//(ABCD)

18 tháng 2 2021

undefinedundefined

16 tháng 2 2018

Đáp án A

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

BD vuông góc CA

BD vuông góc SA

=>BD vuông góc (SAC)

2: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

=>(SCD) vuông góc (SAD)

4: (SC;(SAB))=(SC;SB)=góc CSB

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{AC^2+SA^2}=a\sqrt{5}\)

\(SB=\sqrt{SA^2+AB^2}=2a\)

BC=a

Vì SB^2+BC^2=SC^2

nên ΔSCB vuông tại B

sin CSB=BC/SC=1/căn 5

=>góc CSB=27 độ

23 tháng 10 2023

a: Xét ΔSAB có

M,N lần lượt là trung điểm của SA,SB

=>MN là đường trung bình

=>MN//AB

=>MN//(ABCD)

b; Xét ΔSBC có

N,P lần lượt là trung điểm của SB,SC

=>NP là đường trung bình

=>NP//BC

=>NP//(ABCD)

c: MN//(ABCD)

NP//(ABCD)

\(MN,NP\subset\left(MNP\right)\)

Do đó: (MNP)//(ABCD)