Cho hai đường tròn (O) và (O )cắt nhau tại A và B. Vẽ AC, AD thứ tự là đường kính của hai đường tròn (O) và (O )chứng minh ba điểm C, B, D thẳng hàng. b) Đường thẳng AC cắt đường tròn (O )tại E; đường thẳng AD cắt đường tròn (O) tại F (E, F khác A). Chứng minh 4 điểm C, D, E, F cùng nằm trên một đường tròn. c) Một đường thẳng d thay đổi luôn đi qua A cắt (O) và (O ).. ứ tự tại M và N. Xác định vị trí của d để CM + DN đạt giá trị lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ABC}=90^0\)
Xét (O') có
\(\widehat{ABD}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ABD}=90^0\)
Ta có: \(\widehat{ABC}+\widehat{ABD}=\widehat{CBD}\)
\(\Leftrightarrow\widehat{CBD}=90^0+90^0=180^0\)
hay C,B,D thẳng hàng(đpcm)
a: góc ABC=1/2*sđ cung AC=90 độ
góc ABD=1/2*180=90 độ
góc CBD=góc ABC+góc ABD=90+90=180 độ
=>C,B,D thẳng hàng
b: góc AFC=1/2*sđ cung AC=90 độ
=>CF vuông góc AD
góc AED=1/2*180=90 độ
=>DE vuông góc AC
góc CED=góc CFD=90 độ
=>CEFD nội tiếp
Trong đường tròn tâm O, là góc nội tiếp chắn nửa đường tròn
Trong đường tròn tâm O’, là góc nội tiếp chắn nửa đường tròn
Suy ra, ba điểm C, B và D thẳng hàng.
Trong đường tròn tâm O, là góc nội tiếp chắn nửa đường tròn
Trong đường tròn tâm O’, là góc nội tiếp chắn nửa đường tròn
Suy ra, ba điểm C, B và D thẳng hàng.
Kiến thức áp dụng
+ Trong một đường tròn, góc nội tiếp chắn nửa đường tròn là góc vuông.
Nối B với 3 điểm A, C, D ta có:
=
(góc nội tiếp chắn nửa đường tròn)
=
( góc nội tiếp chắn nửa đường tròn)
Vậy + =
Suy ra ba điểm A, C, D thẳng hàng.
ta có: góc ABC = 90 độ ( góc nt chắn nửa đt )
góc ABD = 90 độ ( góc nt chắn nửa đt )
=> CBD = góc ABC + góc ABD = 180 độ
=> ba điểm C,B,D thẳng hàng
hình bẹn tự vẽ hén:
giải:
Có \(\widehat{ABC}=90^o\) ( vì góc ABC chắn nửa đường tròn đường kính AC)
\(\widehat{ABD}=90^o\) ( vì góc ABD chắn nửa đường tròn đường kính AD)
\(\Rightarrow\widehat{ABC}+\widehat{ABD}=180^o\)
Vậy ba điểm C; B ; D thẳng hàng.