Tính độ dài đường trung bình của một hình thang cân , biết rằng biết rằng hai đg chéo của nó vuông góc với nhau và đường cao của nó bằng 10cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: EF là đg trung bình của hthang ABCD => EF=1/2.(AB+CD) (1)
Xét hthang ABCD có :\(S_{ABCD}=\frac{1}{2}.\left(AB+CD\right).AH\) (2)
Từ (1),(2)=> \(S_{ABCD}=AH.EF\) (3)
mà hthang ABCD đc chia làm 2 tg ko có điểm trong chung là tg ABC và tg ADC nên \(S_{ABCD}=S_{ABC}+S_{ADC}\)
Mặt khác: \(S_{ABC}=\frac{1}{2}.BN.AC\) ; \(S_{ADC}=\frac{1}{2}.DN.AC\)
=>\(S_{ABCD}=\frac{1}{2}.AC.\left(BN+DN\right)=\frac{1}{2}.AC.BD\) (4)
Từ (3),(4)=> \(AH.EF=\frac{1}{2}.AC.BD=\frac{AC^2}{2}\) (vì tg ABCD là hthang)
=>\(EF=\frac{AC^2}{2AH}=\frac{AC^2}{20}\)(vì AH=10cm)
Ta c/m đc : AH=HC => AH^2 =HC^2 => AH^2 + HC^2 = .AH^2 =100
Mà AH^2 +HC^2=AC^2=> AC^2=100
=> EF= 100/20=5 (cm)
Giả sử gọi hình thang cân là ABCD có đáy lớn là CD đáy nhỏ là AB
ta có đường trung bình của hình thang bằng MN= 1/2(AB+CD)
(M là trung điẻm của AD, N là trung điểm của BC)
gọi giao của AC và BD là K từ K kẻ đường thẳng vuông với AB và CD dễ thấy đường thẳng đó đi qua trung điểm I của AB và J của CD
mà K lại vuông nên KI = 1/2 AB
KJ= 1/2 CD
ta có :
IJ= 1/2(AB+CD)=MN= AH = 10 cm
Bn vẽ hình để mik xem sao đã
mik dùng mt ko chụp đc hình